Решение системы общего вида
Пусть задана система линейных уравнений общего вида (15.1), где т ≤ n, т.е. число неизвестных не меньше числа уравнений. Представим общий порядок решения этой системы.
1. Необходимо определить совместность системы, т.е. определить сначала ранги матрицы системы А и расширенной матрицы AB. По теореме Кронекера-Капелли если ранги этих матриц не совпадают, то система несовместна и тогда нет смысла ее решать. Если же ранги матриц А и АB равны, то система (15.1) совместна.
Определение 1. Рангом совместной системы линейных алгебраических уравнений называется ранг ее матрицы.
2. Пусть система (15.1) совместна и ранг ее равен r. Выделим в матрице системы (15.2) некоторый базисный минор; предположим, что именно первые r строк матриц А и АB являются базисными. Тогда по теореме о базисном миноре остальные строки матрицы являются линейными комбинациями остальных строк. В свою очередь это означает, что в системе (15.1) первые r уравнений, соответствующие базисным строкам матрицы А, являются базисными, а остальные — их линейными комбинациями. Тогда эти (m — r) уравнений можно удалить из системы, причем в результате указанных элементарных преобразований мы получаем эквивалентную систему:
3. Система (15.7) характерна тем, что ее ранг равен числу уравнений в ней, причем r ≤ n, т.е. ранг не превосходит числа неизвестных. Поэтому возможны два случая: либо r = n, либо r < n. В первом случае система (15.7) имеет квадратную невырожденную матрицу порядка r (см. выше) и, согласно теореме Крамера, существует единственное решение этой системы. Иными словами, если ранг системы равен числу неизвестных, то система имеет единственное решение, т.е. она является определенной.
4. Рассмотрим теперь случай, когда r < п. Перенесем в правые части уравнений (15.7) все слагаемые, содержащие неизвестные xr+1, xr+2, …, xп. Тогда система принимает вид
Неизвестным xr+1, ..., xп можно придавать любые значения, и потому они называются свободными. Неизвестные х1, x2, ..., xr соответствующие базисным столбцам, называются базисными. Из системы (15.8) легко найти выражения базисных неизвестных через свободные, согласно теореме Крамера, рассматривая правые части этих уравнений как элементы столбца свободных членов, содержащие xr+1, xr+2,…, хп. Можно показать, что базисные неизвестные x1, х2, ..., xr линейно выражаются через свободные неизвестные. Поскольку свободные неизвестные могут принимать любые значения, то в случае когда ранг совместной системы меньше числа неизвестных, эта система является неопределенной: она имеет бесчисленное множество решений.