Понятие обратной матрицы

Ранг матрицы

Обратная матрица

 

Выше уже говорилось, что матрицы размера т х п можно рассматривать как системы, состоящие из m n-мерных векто­ров (или из п m-мерных векторов). Поскольку любая систе­ма векторов характеризуется рангом (п. 12.2), то естественно встает вопрос о такой же характеристике и для матриц. Так как здесь имеют место две совокупности векторов — векторы-строки и векторы-столбцы, то у матрицы, вообще говоря, два ранга — строчный и столбцовый. Ответ на вопрос об их рав­ноправии дает следующая теорема.

ТЕОРЕМА 1. Строчный и столбцовый ранги любой матрицы равны.

Доказательство этой теоремы мы опускаем.

 

Стало быть, ранг любой матрицы размера т х п можно ис­кать как ранг одной из двух систем векторов: либо т векторов-строк, либо п векторов-столбцов. Как следует из п. 12.2, для прямоугольной матрицы максимальный ранг r = min (m, n). Для квадратной матрицы размером п х n ее максимальный ранг не может превышать п: rп.

 

 

Понятие обратной матрицы распространяется только на квадратные матрицы, поэтому здесь и далее мы будем иметь дело с матрицами порядка п.

Определение 1. Матрица порядка п называется вырожден­ной, если ее ранг r < п.

Определение 2. Матрица А-1 называется обратной по отно­шению к матрице А, если их произведение равно единичной матрице:

 

 

Несколько забегая вперед, отметим, что для вырожденной матрицы не существует обратной матрицы. Иными словами, если для некоторой матрицы порядка п ее ранг r < п, то для нее не существует обратной матрицы.