Основные методы интегрирования
Таблица основных неопределенных интегралов
Ранее мы получили таблицу основных производных элементарных функций. Приводимая ниже таблица основных неопределенных интегралов представляет собой вычислительный аппарат интегрального исчисления. Часть формул таблицы непосредственно следует из определения интегрирования как операции, обратной дифференцированию. Справедливость всех формул легко проверить дифференцированием.
Интегралы этой таблицы принято называть табличными.
Как было установлено в п. 4.4, операция дифференцирования не выводит нас из класса элементарных функций. С операцией интегрирования дело обстоит иначе: интегралы от некоторых элементарных функций уже не являются элементарными функциями. Укажем некоторые из них.
Каждый из этих интегралов есть функция, которая не является элементарной, хотя подынтегральные функции в этих интегралах являются элементарными. Они играют большую роль в прикладных науках; так, интеграл 1 является одним из основных в теории вероятностей и статистике.
Как правило, интегралы, с которыми приходится иметь дело в различных приложениях, не выражаются элементарными функциями (или, как принято говорить, являются "неберущимися"). Тем не менее существуют достаточно хорошо разработанный аппарат приближенных формул с использованием элементарных функций и методы приближенных расчетов, позволяющие с любой степенью точности оценивать и вычислять "неберущиеся" интегралы.