Methane-tanks, the characteristic of processes of the fermentation proceeding in methane-tanks

Lectures 12-13

 

Anaerobic digestion is a series of processes in which microorganisms break down biodegradable material in the absence of oxygen. It is used for industrial or domestic purposes to manage waste and/or to release energy. Much of the fermentation used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion. Silage is produced by anaerobic digestion.

The digestion process begins with bacterial hydrolysis of the input materials to break down insoluble organic polymers, such as carbohydrates, and make them available for other bacteria. Acidogenic bacteria then convert the sugars and amino acids into carbon dioxide, hydrogen, ammonia, and organic acids. Acetogenic bacteria then convert these resulting organic acids into acetic acid, along with additional ammonia, hydrogen, and carbon dioxide. Finally, methanogens convert these products to methane and carbon dioxide.The methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments.

It is used as part of the process to treat biodegradable waste and sewage sludge. As part of an integrated waste management system, anaerobic digestion reduces the emission of landfill gas into the atmosphere. Anaerobic digesters can also be fed with purpose-grown energy crops, such as maize.

Anaerobic digestion is widely used as a source of renewable energy. The process produces a biogas, consisting of methane, carbon dioxide and traces of other ‘contaminant’ gases. This biogas can be used directly as cooking fuel, in combined heat and power gas engines or upgraded to natural gas-quality biomethane. The use of biogas as a fuel helps to replace fossil fuels. The nutrient-rich digestate also produced can be used as fertilizer.

Anaerobic digestion facilities have been recognized by the United Nations Development Programme as one of the most useful decentralized sources of energy supply, as they are less capital-intensive than large power plants. With increased focus on climate change mitigation, the re-use of waste as a resource and new technological approaches which have lowered capital costs, anaerobic digestion has in recent years received increased attention among governments in a number of countries, among these the United Kingdom (2011), Germany and Denmark (2011).

Scientific interest in the manufacturing of gas produced by the natural decomposition of organic matter was first reported in the 17th century by Robert Boyle and Stephen Hale, who noted that flammable gas was released by disturbing the sediment of streams and lakes.[10] In 1808, Sir Humphry Davy determined that methane was present in the gases produced by cattle manure. The first anaerobic digester was built by a leper colony in Bombay, India, in 1859. In 1895, the technology was developed in Exeter, England, where a septic tank was used to generate gas for the sewer gas destructor lamp, a type of gas lighting. Also in England, in 1904, the first dual-purpose tank for both sedimentation and sludge treatment was installed in Hampton. In 1907, in Germany, a patent was issued for the Imhoff tank, an early form of digester.

Through scientific research, anaerobic digestion gained academic recognition in the 1930s. This research led to the discovery of anaerobic bacteria, the microorganisms that facilitate the process. Further research was carried out to investigate the conditions under which methanogenic bacteria were able to grow and reproduce. This work was developed during World War II, during which in both Germany and France, there was an increase in the application of anaerobic digestion for the treatment of manure.

Many microorganisms are involved in the process of anaerobic digestion, including acetic acid-forming bacteria (acetogens) and methane-forming archaea (methanogens). These organisms feed upon the initial feedstock, which undergoes a number of different processes, converting it to intermediate molecules, including sugars, hydrogen, and acetic acid, before finally being converted to biogas.

Different species of bacteria are able to survive at different temperature ranges. Ones living optimally at temperatures between 35 and 40 °C are called mesophiles or mesophilic bacteria. Some of the bacteria can survive at the hotter and more hostile conditions of 55 to 60 °C; these are called thermophiles or thermophilic bacteria. Methanogens come from the domain of archaea. This family includes species that can grow in the hostile conditions of hydrothermal vents, so are more resistant to heat, and can, therefore, operate at high temperatures, a property unique to thermophiles.

As with aerobic systems, the bacteria, the growing and reproducing microorganisms within anaerobic systems, require a source of elemental oxygen to survive, but in anaerobic systems, there is an absence of gaseous oxygen. Gaseous oxygen is prevented from entering the system through physical containment in sealed tanks. Anaerobes access oxygen from sources other than the surrounding air, which can be the organic material itself or may be supplied by inorganic oxides from within the input material. When the oxygen source in an anaerobic system is derived from the organic material itself, the 'intermediate' end products are primarily alcohols, aldehydes, and organic acids, plus carbon dioxide. In the presence of specialised methanogens, the intermediates are converted to the 'final' end products of methane, carbon dioxide, and trace levels of hydrogen sulfide. In an anaerobic system, the majority of the chemical energy contained within the starting material is released by methanogenic bacteria as methane.

Populations of anaerobic microorganisms typically take a significant period of time to establish themselves to be fully effective. Therefore, common practice is to introduce anaerobic microorganisms from materials with existing populations, a process known as "seeding" the digesters, typically accomplished with the addition of sewage sludge or cattle slurry.

 

 

 

 

Picture 7. The key process stages of anaerobic digestion.

 

Control questions:

  1. What is the Anaerobic Digestion Process?
  2. Is a Permit Required to Operate Digesters?
  3. What is a Co-Generator?
  4. What are the Environmental Benefits?