Тема 5. Регулярные методы построения двоичных помехоустойчивых кодов

Классификация корректирующих кодов

Общая классификация, удобная с точки зрения следующего изучения важнейших классов кодов, представлена на рисунке.

 

Корректирующие коды можно разделить на два больших класса: блочные и непрерывные.

Блочные коды состоят из отдельных комбинаций (блоков), которые кодируются и декодируются независимо.

Непрерывные или сверточные коды представляют непрерывную последовательность кодовых символов, ее разделения на отдельные кодовые комбинации не проводится.. Название этих кодов происходит от того что исходная последовательность непрерывного кода представляет свертку входной информационной последовательности с импульсной характеристикой кода. Составные(комбинированные, производные, коды произведений, специальные и др.) корректирующие коды строят на основе блочных или блочного и непрерывного кодов. Эти коды называют также каскадными кодами .

Блочный код называют линейным, если все его кодвые слова образуют линейное векторное пространство. Таким образом, новую разрешенную комбинацию кода можно получить как линейную комбинацию других разрешенных кодовых слов, в противоположном случае код называют нелинейным. Систематическим называют код, в котором кодовые слова состоят из k информационных и r проверочных символов, при этом позиции информационных и проверочных символов одни и те же для всех кодовых слов кода. Такое формирование кодовых комбинаций существенно упрощает техническую реализацию устройства кодировки и декодирования. Поэтому систематические коды являются одними из наиболее распространенных.

Подкласом линейных (систематических) кодов являются коды Хемминга и циклические коды, например, коды Боуза-Чоудхури- Хоквингема (БЧХ-коды). Редким случаем БЧХ-кодов являются коды максимальной длины (М-последовательности). По установленной традиции ряд подклассов коррекционных кодов помечают фамилиями тех ученых, которые впервые предложили и исследовали тот или другой вид кодировки.

Особенности построения и характеристики многих кодов, выделенных на рисунке является предметом дальнейшего рассмотрения.