Тема 3.3 МОДЕЛЬ СТРУКТУРЫ СИСТЕМЫ

 

Еще раз подчеркнем, что для достижения ряда практических целей достаточно модели "черного ящика" или модели состава. Однако очевидно, что есть вопросы, решить которые с помощью этих моделей нельзя. Чтобы получить велосипед, недостаточно иметь "ящик" со всеми отдельными его деталями (состав налицо). Необходимо еще правильно соединить все детали между собой, или, говоря более общно, установить между элементами определенные связи — отношения. Совокупность необходимых и достаточных для достижения цели отношений между элементами называется структурой системы.

Перечень связей между элементами (т.е. структура системы) является отвлеченной, абстрактной моделью: установлены только отношения между элементами, но не рассмотрены сами элементы. Хотя на практике безотносительно к элементам говорить о связях можно лишь после того, как отдельно рассмотрены сами элементы (т.е. рассмотрена модель состава), теоретически модель структуры можно изучать отдельно.

Бесконечность природы проявляется и в том, что между реальными объектами, вовлеченными в систему, имеется невообразимое (может быть, бесчисленное) количество отношений. Однако когда мы рассматриваем некоторую совокупность объектов как систему, то из всех отношений важными, т.е. существенными для достижения цели, являются лишь некоторые. Точнее, в модель структуры (т.е. в список отношений) мы включаем только конечное число связей, которые, по нашему мнению, существенны по отношению к рассматриваемой цели.

Пример. Рассмотрим систему "часы вообще". Считаем, что в состав такой системы входят три элемента: датчик, индикатор и эталон времени (см. "Первое определение системы"). Структура часов определяется следующими отношениями между парами элементов:

Таблица 3.2. Отношение между парами элементов часов.

Пара элементов Связь между ними
Датчик и индикатор Приблизительное соответствие
Эталон и датчик Приблизительное соответствие
Индикатор и эталон Периодическое сравнение и устранение расхождения

 

Отношения между элементами могут быть самыми разнообразными. Однако можно попытаться их классифицировать и по возможности перечислить. Трудность состоит в том, что мы знаем не все реально существующие отношения и вообще неизвестно, является ли конечным их число. Интересное исследование было проведено с естественными языками. Выделение языковых конструкций, выражающих отношения (типа находиться на (под, около, ...), быть причиной, быть подобным, быть одновременно, состоять из, двигаться к (от, вокруг, ...) и т.п.), привело к выводу, что в английском, итальянском и русском языках число выражаемых отношений примерно одинаково и немного превышает 200. Этот результат не может служить доказательством конечности числа отношений, но сам факт дает повод для размышлений.

Тема 3.4 СТРУКТУРНАЯ СХЕМА СИСТЕМЫ

 

Объединяя все изложенное в предыдущих параграфах, можно сформулировать второе определение системы: система есть совокупность взаимосвязанных элементов, обособленная от среды и взаимодействующая с ней как целое.

Очевидно, что это определение охватывает модели "черного ящика", состава и структуры. Все вместе они образуют еще одну модель, которую будем называть структурной схемой системы; в литературе встречаются также термины "белый ящик", "прозрачный ящик", подчеркивающие ее отличие от модели "черного ящика", а также термин "конструкция системы", который мы будем использовать для обозначения материальной реализации структурной схемы системы. В структурной схеме указываются все элементы системы, все связи между элементами внутри системы и связи определенных элементов с окружающей средой (входы и выходы системы).

 

Рисунок 3.3.. Структурная схема часов

Пример 3.1. Структурная схема системы "синхронизируемые часы" приведена на рис. 3.3. Элементы системы изображены в виде прямоугольников; связи 1-3 между элементами описаны в табл. 3.2; вход 4 изображает поступление энергии извне; вход 5 соответствует регулировке индикатора; выход 6 — показание часов.

Все структурные схемы имеют нечто общее, и это побудило математиков рассматривать их как особый объект математических исследований. Для этого пришлось абстрагироваться от содержательной стороны структурных схем, оставив в рассматриваемой модели только общее для каждой схемы. В результате получилась схема, в которой обозначается только наличие элементов и связей между ними, а также (в случае необходимости) разница между элементами и между связями. Такая схема называется графом. Следовательно, граф состоит из обозначений элементов произвольной природы, называемых вершинами, и обозначений связей между ними, называемых ребрами (иногда дугами). На рис. 3.4 изображен граф: вершины обозначены в виде кружков, ребра — в виде линий.

Рисунок 3.4. Пример графа.

Часто бывает необходимо отразить несимметричность некоторых связей; в таких случаях линию, изображающую ребро, снабжают стрелкой (в таком случае ребро становится дугой). Если направления связей не обозначаются, то граф называется неориентированным, при наличии стрелок — ориентированным (полностью или частично). Данная пара вершин может быть соединена любым количеством ребер; вершина может быть соединена сама с собой (тогда ребро называется петлей). Если в графе требуется отразить другие различия между элементами или связями, то либо приписывают разным ребрам различные веса (взвешенные графы), либо раскрашивают вершины или ребра (раскрашенные графы).

Оказалось, что для графов может быть построена интересная и содержательная теория, имеющая многочисленные приложения. Разнообразные задачи этой теории связаны с различными преобразованиями графов, а также с возможностью рассмотрения различных отношений в графах: весов, рангов, цветов, вероятностных характеристик (стохастические графы) и т.д. В связи с тем, что множества вершин и ребер формально можно поменять местами, получается два разных представления системы в виде вершинного или в виде реберного графа. Оказывается, что в одних задачах удобнее использовать вершинный, а в других — реберный граф.

Графы могут изображать любые структуры, если не накладывать ограничений на пересекаемость ребер. Некоторые типы структур имеют особенности, важные для практики, они выделены из других и получили специальные названия. Так, в организационных системах часто встречаются линейные, древовидные (иерархические) и матричные структуры; в технических системах чаще встречаются сетевые структуры (см. рис. 3.5); особое место в теории систем занимают структуры с обратными связями, которые соответствуют кольцевым путям в ориентированных графах.

Рисунок 3.5. Графы, соответствующие различным структурам: а) линейная структура; б) древовидная структура; в) матричная структура; г) сетевая структура

Пример 3.2. Структурная схема ЭВМ пятого поколения, с помощью которой пользователь, не умеющий программировать, может решать достаточно сложные задачи, приведена на рис. 3.6. Отметим, что в этой схеме имеются и иерархические, и линейные, и обратные связи.

Рисунок 3.6. Структурная схема ЭВМ пятого поколения

 

Одной структурной информации, которая содержится в графах, для ряда исследований недостаточно. В таких случаях методы теории графов становятся вспомогательными, а главным является рассмотрение конкретных функциональных связей между входными, внутренними и выходными переменными системы.

Вывод:

Объединив модели "черного ящика", состава и структуры системы, мы получим самую полную (для наших целей), самую подробную (для нашего уровня знаний) модель системы — ее структурную схему.