Применение адсорбционных процессов
В заключение глав 4—6, посвященных адсорбции, еще раз остановимся на роли адсорбции в промышленности. В обобщенном виде применение различных видов адсорбции в промышленности дано в табл. 6.3.
Т а б л и ц а 6.3
Применение адсорбционных процессов
Поверхность раздела фаз | Процессы |
Твердое тело — газ Жидкость — газ Твердое тело — жидкость | Улавливание вредных примесей, очист- ка воздуха, регулирование газового состава, поглощение влаги и др. Изменение свойств и усиление адге- зии жидких продуктов, улучшение смачивания, пенообразование, сопутствующие процессы Очистка жидких продуктов, извлечение примесей, разделение компонентов растворов |
Адсорбция газов на твердых поверхностях используется для очистки воздуха производственных помещений от паров некоторых растворителей, вредных веществ и примесей (аммиака, сероводорода, диоксида серы, некоторых спиртов), а также для очистки технологических газовых потоков с целью предотвращения выбросов вредных веществ в атмосферу. Особенно много вредных газообразных примесей образуется в лакокрасочной, различных отраслях химической и металлургической промышленности, в некоторых отраслях пищевой промышленности, а именно масложировой (например, в производстве маргарина) и в бродильной (например, в производстве дрожжей).
Поглощение паров воды происходит на пористых веществах, которые выполняют роль твердого адсорбента. Подобные процессы наблюдаются в отношении древесины, тканей, асбеста, а также сахара, соли и сухарей.
Адсорбционный способ регулирования газового состава хранилищ скоропортящихся продуктов позволяет в несколько раз сократить потери и увеличить сроки хранения. Способ заключается в адсорбции кислорода и снижении его концентрации в 7—9 раз по сравнению с его концентрацией в атмосферном воздухе с одновременным увеличением концентрации диоксида углерода (СО2получают искусственным путем). Так. например, для хранения картофеля оптимальная температура воздуха составляет +10°С (283 К), а газовая среда должна иметь следующий состав: 1—5% СО2, 1—3% О2, 93—97% N2.
Адсорбция на границе жидкость – газ обычно приводит к снижению поверхностного натяжения жидкости и как следствие этого – к улучшению смачивания твердой поверхности (см. параграф 3.3). Адсорбция различных пищевых кислот, лимонной в частности, снижает по сравнению с водой поверхностное натяжение большинства прохладительных напитков. Адсорбция веществ на поверхности раздела жидкость — газ способствует устойчивости пен. Подобный процесс имеет место в бродильной промышленности при производстве дрожжей и некоторых других полупродуктов. Усиление смачивания водой различных поверхностей широко используется в промышленности в качестве сопутствующего процесса при мойке оборудования, подготовке сырья, обработке полуфабрикатов и т.д.
Адсорбция на границе твердое тело – жидкость широко применяется при очистке жидкостей (например, диффузионного сока при производстве сахара, растительных масел и соков) от примесей.
Следует отметить, что часто один и тот же адсорбционный процесс в промышленности используют для различных целей. Так, например, при обесцвечивании сахарных сиропов и других жидкостей одновременно устраняется их запах, привкус, удаляются коллоидные и иные примеси.
На основе адсорбционных процессов происходит разделение смесей и выделение определенных компонентов: например, разделение нефти при производстве моторных топлив, регенерация топлива. Для газовых смесей – получение воздуха, обогащенного кислородом, вплоть до почти чистого. В медицине — для извлечения вредных веществ из крови (гемосорбция).
Итак, адсорбция как поверхностное явление находит широкое применение в различных отраслях промышленности.
Упражнения
1. Определите, сколько микропор приходится на 1 кг активированного угля, учитывая, что микропоры имеют цилиндрическую форму (диаметр 1,2 нм, высота 1,7 нм).
Объем одной микропоры
V1= π∙r2h = 3,14 (1,2∙10–9)21,7∙10 9= 7,686∙10–27м3.
Согласно данным табл. 6.1 удельный объем микропор составляет 0,5∙ 103 м3/кг. Число микропор
2. Во сколько раз возрастает удельная поверхность частиц активированного угля диаметром а = 65 мкм за счет пор. если его удельная поверхность равна 3,2∙ 105м2/кг, а плотность угля — 0,47 ∙ 103 мг/м3.
Удельная поверхность непористого адсорбента определяется по формуле (1.4):
С учетом сведений табл. 6.1 рассчитаем увеличение удельной поверхности (N) за счет пор
,
т.е. она возрастает в 1629 раз.
3. Объем микропор цеолита составляет 0,235 см3/кг. Определите, сколько воздуха можно полностью очистить от диоксида углерода СО2, концентрация которого 6,5%, используя 100 г цеолита. Плотность воздуха равна 1,293 кг/м3, диоксида углерода — 1,977 кг/м3,. степень заполнения пор a — 45%.
Определим количество СО2, которое содержится в 1м3воздуха:
Объем очищаемого воздуха