Окружность. Эллипс. Гипербола. Парабола

 

1.50. Составить уравнение окружности с центром в заданной точке С и данным радиусом r: 1) С (4; –7), r = 5; 2) С (–6; 3), r = 3) С (3; –2), r = 3.

1.51. Окружность с центром в точке S (12; –5) проходит через начало координат. Составить уравнение этой окружности.

1.52. Составить уравнение окружности, диаметром которой является отрезок прямой 12х + 5у + 60 = 0, заключенный между осями координат.

1.53. Известно, что концы одного из диаметров окружности находятся в точках (2; –7) и (–4; 3). Составить уравнение окружности.

1.54. Составить уравнение прямой, проходящей через центры окружностей х+ у= 5 и х+ у+ 2х + 4у = 31. Найти отношение их радиусов..

1.55. Найти уравнение диаметра окружности х+ у– 6х + 14у – 6 = 0, перпендикулярного хорде х – 2у = 2.

1.56. Найти полуоси, вершины, фокусы и эксцентриситет эллипса: 1) 9х+ 25 у– 225 = 0; 2) 16х+ 25у= 400.

1.57. Найти координаты вершин, оси, фокусы, эксцентриситет и уравнения асимптот следующих гипербол:

1) 4х– 5 у– 100 = 0; 2) 9х– 4 у– 144 = 0;

3) 16х– 9 y+ 144 = 0; 4) 9х– 7 у+ 252 = 0.

1.58. Написать уравнение гиперболы, имеющей вершины в фокусах, а фокусы – в вершинах эллипса + = 1.

1.59. Составить уравнение параболы, проходящей через точки:

1) (0; 0) и (–1; –3) симметрично относительно оси ОХ;

3) (0; 0) и (2; –4) симметрично относительно оси ОУ.

1.60. Директрисой параболы, вершина которой находится в начале координат, является прямая 2х – 3 = 0. Составить уравнение параболы и найти ее фокус.

1.61. Найти уравнение параболы и ее директрисы, если известно, что парабола симметрична относительно оси ОХ, точка пересечения прямых у = х и
х + у – 2 = 0 лежит на параболе и вершина параболы находится в точке с абсциссой, равной 0,5.

1.62. Найти расстояние от начала координат до прямой, проходящей через центр гиперболы у = , и вершину параболы у = – 2х+ 5х – 2.

1.63. Вершина параболы лежит в конце одного из диаметров окружности х+ у= 9. Составить уравнение параболы, если общая хорда параболы и окружности лежит на прямой у – 2 = 0.

1.64. Составить уравнение прямой, проходящей через центр окружности х2 + у2 + 4х + 12у +15 = 0 параллельно прямой х + у = 0.

1.65. Составить уравнение параболы, симметричной относительно оси Ох, с вершиной в начале координат и проходящей через точку А(– 2; –3). Найти фокус и директрису параболы.

 

1.3.3. Прямая и плоскость в пространстве

 

Общее уравнение плоскости в пространстве: Ax + By + Cz + D = 0 .

A (x–х0) + B (y–y0) + C (z–z0) = 0 – уравнение плоскости, проходящей через данную точку, где (А, В, С) – вектор, перпендикулярный плоскости – нормаль.

Каноническое уравнение прямой в пространстве:

,

где (m, n, p)направляющий вектор прямой.

Взаимное расположение прямых и плоскостей определяется из условий параллельности и перпендикулярности нормали и направляющего вектора.

Пример 1.9.Составить уравнение плоскости, проходящей через точку
М(1; –2; 3) и перпендикулярной вектору = (3; –4; 5).

Решение.

Нормаль – это вектор, перпендикулярный плоскости (см. рис.1.4). В качестве можно взять .

 

 
 


Рис. 1.4. Перпендикулярность плоскости вектору

 

Тогда уравнение плоскости, перпендикулярной вектору =(3; –4; 5) и проходящей через точку М(1; –2; 3) имеет вид:

3(х – 1) – 4(y+2) + 5(z – 3) = 0 или 3х – 4y + 5z – 26 = 0.

Пример 1.10. Составить уравнение прямой, проходящей через точку
М0 (3; –2; 4), перпендикулярно плоскости 5х +3у –7z +1 = 0.

Прямая перпендикулярна плоскости ( рис. 1.5.), значит, в качестве её направляющего вектора можно взять нормаль плоскости, т.к. они коллинеарны. . И известна точка, через которую проходит прямая. Используем каноническое уравнение, получаем:

М =

Рис. 1.5. Перпендикулярность прямой и плоскости

1.66. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору , если:

1) (2; –3; 1), = (5; 1; –4); 2) (1; 0; 1), = (1; –2; 3).

1.67. Составить уравнение плоскости, проходящей через ось ОУ и точку , если: 1) (2; –4; 3); 2) (–1; 2; –4).

1.68. Составить уравнение плоскости, проходящей через точку М(1; –2; 3): а) перпендикулярной вектору = (3; –4; 5); б) параллельной плоскости
3х – 4у + 5z + 6 = 0; в) точку М1(0; 2; 5) и параллельной оси Оу; г) проходящей через ось Оz.

1.69. Найти проекцию В точки А(5; 2; –1): а) на плоскость 2х – у + 3z + 23 = 0; б) на прямую .

а) Решение.

Найдем уравнение прямой, проходящей через точку А (5; 2; –1) и перпендикулярной плоскости. В качестве направляющего вектора возьмем нормаль к плоскости = (2; – 1; 3):

.
Запишем параметрическое уравнение прямой:

х = 5 + 2 t;

у = 2 – t;

z = –1 +3 t.

Найдем пересечение прямой и плоскости, для этого подставим полученные выражения в уравнение плоскости, получим:

2(5 + 2t) – (2 – t) + 3(–1 + 3t) + 23 = 0, откуда t = –2, т. е. точка пересечения имеет координаты хв = 1; ув = 4; zв = –7.

Ответ: В(1; 4; –7).

б) Для того, чтобы найти проекцию точки на прямую надо:

· построить плоскость, проходящую через заданную точку, перпендикулярно прямой,

· найти пересечение этой плоскости с прямой.

1.70. Составить уравнение плоскости, проходящей через точку М0 (2; –3;1) параллельно векторам = (–3; 2; –1) и = (1; 2; 3)

1.71. Составить уравнение плоскости, проходящей через точки М1(2; –15; 1) и М2 (–1; 1; –1) параллельно прямой, определяемой точками А (5; –2; 3) и В(6;1;0).

 

Контрольные задания

Вариант 1.

1. Составить уравнение прямой, проходящей через точку пересечения прямых 2х – 3у + 5=0 и 3х+ у –7 = 0, перпендикулярно прямой 5х + 4у + 8 = 0.

2. Определить вид кривой: 4x2 + 3y2 – 8x +12y – 32 = 0, построить ее.

3. Найти уравнение прямой, проходящей через точку (1;–2; 0) и перпендикулярной векторам (0; 3; –1) и (2; 1;–5)

4. Определить, при каких значениях к плоскость 2кx – 3y + z + 3 = 0 будет параллельна прямой, проходящей через точки (2; –1, 1) и (3; –1; –3).

Вариант 2.

1. Составить уравнение перпендикуляра к прямой 8х + 4у –3 = 0 в точке ее пересечения с прямой х – у = 0.

2. Составить уравнение диаметра окружности x2 + y2 + 14y –6 x – 6 = 0, перпендикулярного хорде x – 2y = 2.

3. Найти уравнение плоскости, содержащей начало координат и перпендикулярной прямой, проходящей через точки (1; 1; –2) и (0; 7; –4).

4. Составить уравнение прямой, проходящей через точку (1; –3; 5), параллельно прямой .

Вариант 3.

1. Дана прямая 2х + 5у – 1 = 0. Провести через точку М(–1; 3) прямую, параллельную данной и перпендикулярную данной.

2. Из точки М(–1;–1; 4) опущен на плоскость перпендикуляр, его основание Т(2; 1; 3). Составить уравнение плоскости.

3. Определить вид кривой, найти полуоси, фокусы, построить

2 + 9у2 – 30х + 18у + 9 = 0.

4. Определить взаимное расположение прямых в пространстве

 

и .


 

ГЛАВА 2. математический анализ

Основные разделы математического анализа: дифференциальное и интегральное исчисления функций одной и нескольких переменных, дифференциальные уравнения, числовые и степенные ряды широко используются при решении прикладных экономических задач. Все перечисленные разделы тесно взаимосвязаны и образуют стройную аксиоматическую теорию. Ряд заданий главы взят из пособия [4].