Диффузия
Диффузией называют самопроизвольное распространение вещества из области с большей концентрацией в область с меньшей концентрацией. Различают следующие виды диффузии: молекулярную, ионную и коллоидных частиц.
Диффузия высокодисперсных коллоидных частиц схематически показана на рис. 9.3. В нижней части концентрация частиц больше, чем в верхней, т.е. v1> v2*. Диффузия идет из области с большей концентрации в область с меньшей, т.е. снизу вверх; направление диффузии на рис. 9.3 показано стрелкой. Диффузия характеризуется определенной скоростью перемещения вещества через поперечное сечение В, которая равна dm/dτ.
На расстоянии Δх разность концентраций составит v2– v1, так как v2< v1, то эта величина отрицательна. Изменение концентрации, отнесенное к единице расстояния, называют градиентом концентрации. Градиент концентрации равен (v2– v1)/Δx, или в дифференциальной форме, dv/dx.
Скорость перемещения вещества пропорциональна градиенту концентрации и площади В, через которую происходит движение диффузионного потока, т.е.
(9.4)
Скорость диффузии (dm/dt) величина положительная, а градиент концентрации (dv/dx) — отрицателен; по этой причине перед правой частью уравнения (9.4) ставится знак минус.
Коэффициент пропорциональности D называют коэффициентом диффузии. Уравнение (9.4) является основным уравнением диффузии в дифференциальной форме. Оно справедливо для всех видов диффузии, в том числе и для диффузии коллоидных частиц. Основное уравнение диффузии в интегральной форме применимо для двух процессов — стационарного и нестационарного.
Для стационарного процесса градиент концентрации постоянен, т.е. dv/dx = const. Значительное число диффузионных процессов близко к стационарным. Интегрируя уравнение (9.4), получим
(9.5)
Формула (9.5) характеризует первый закон диффузии Фика. Из этой формулы нетрудно определить физический смысл коэффициента диффузии. Если –dv/dх = 1, В = 1 и τ = 1, то m = D, т.е. коэффициент диффузии численно равен массе диффундирующего вещества, когда градиент концентрации, площадь сечения диффузионного потока и время равны единице. Следует говорить лишь о численном равенстве, так как размерность коэффициента диффузии [м2/с] не соответствует размерности массы.
В случае нестационарного процесса градиент концентрации не является постоянной величиной, т.е. dv/dx ≠ const. Интегрирование уравнения (9.4) усложняется, а форма расчетного уравнения учитывает изменение градиента концентрации.
Значения коэффициента диффузии для различных ее видов приведены ниже:
Вид диффузии | Ионная | Молекулярная | Коллоидных частиц |
Коэффициент диффузии, м2/с | 10–8 | 10-9 | 10–10 |
Коллоидные частицы характеризуются минимальным коэффициентом диффузии. Это означает, что диффузия коллоидных частиц более затруднена по сравнению с молекулярной и ионной. Так, например, скорость диффузии частиц карамели, дисперсной фазой которой является коллоидный раствор, в 100—1000 раз меньше скорости диффузии молекул сахара, формирующих молекулярный раствор. В газах коэффициент диффузии увеличивается до 10–4, а в твердых телах снижается до 10–12м2/с.
Количественно диффузия определяется коэффициентом диффузии, который связан со средним сдвигом, следующим соотношением:
(9.6)
Диффузия высокодисперсных частиц совершается беспорядочно с большей вероятностью в сторону меньшей концентрации. Время, определяемое соотношением (9.6), характеризует продолжительность диффузии. Чем меньше коэффициент диффузии, тем продолжительнее процесс диффузии.
При выводе уравнения (9.6) были приняты следующие допущения: частицы дисперсных систем движутся независимо друг от друга и между ними отсутствует взаимодействие; средняя энергия поступательных движений частиц равна 0,5 kT.
Используя формулу (9.3) для определения среднего сдвига, коэффициент диффузии можно представить в виде
(9.7)
где k — константа Больцмана, равная R/NA.
Если коэффициент диффузии известен, то по формуле (9.7) можно определить размер частиц:
(9.8)
Как следует из формулы (9.7), чем больше размер частиц, тем меньше коэффициент диффузии и менее интенсивна сама диффузия.
Формулы (9.6)—(9.8) позволили экспериментальным путем определить константу Больцмана и число Авогадро.
В воздухе коэффициент диффузии частиц радиусом 1 нм составляет 1,28 ∙ 10–6м2/с. Для частиц радиусом 100 нм коэффициент диффузии снижается до 2,21 ∙ 10–10м2/с, для частиц радиусом 10 мкм — до 1,38 ∙10–10м2/с. Для частиц, размер которых превышает 10 мкм, т.е. для грубодисперсных систем, коэффициент диффузии и сама диффузия ничтожны.
Диффузия в полной мере проявляется у высокодисперсных систем, ослаблена у среднедисперсных и практически отсутствует у грубодисперсных систем.
Коэффициент диффузии зависит и от формы частиц, что не учитывается в уравнении (9.7). Поэтому при помощи формулы (9.8) можно определить размер только коллоидных шарообразных частиц или приведенный к шарообразному размеру частиц неправильной формы.
Таким образом, диффузия непосредственно связана с броуновским движением; эта связь количественно выражается при помощи уравнений (9.6)—(9.8).