Формула Пуассона

Представление в виде степенного ряда

Лекция № 1, 2

Пусть U(z) – вещественная функция, гармоническая в круге . Тогда можно построить другую вещественную функцию V(z) , гармоническую в , такую что функция

F(z)=U(z)+iV(z)

Является аналитической в этом круге. Такая функция V называется гармонически спряженной с U, а функции U(z) и V(z) – сопряженными гармоническими функциями

U(z)=ReF(z)

F(z) разлагается в степенной ряд , который равномерно сходиться компактных множествах круга

Пусть , тогда

,

где

Таким образом, любая функция U(z), гармоническая в круге , допускает представление в виде ряда

Равномерно сходящегося на компактных подмножествах круга .

Формулу, которую мы вывели в предыдущем пункте, можно записать в замкнутом виде.

Если R > 1, то мы легко находим, что при r < 1

Суммируя две геометрические прогрессии, получаем

при

Таким образом, мы приходим к представлению Пуассона: если U(z) — гармоническая функция в {|z| <.R}, где R>1, то при имеет место формула

Эта формула является фундаментальной для всей теории. Мы сейчас увидим, что она справедлива при намного более общих условиях, чем указанное выше. Функция

Называется ядром Пуассона для круга {|z|<1}.