Твердые электроизоляционные материалы
Значение электроизоляционных материалов в производстве электротехнических изделий и конструкций.
Электрическая изоляция
Электроизоляционная и кабельная техника
Изоляция электрических установок разделяется на внешнюю и внутреннюю. К внешней изоляции относятся воздушные промежутки (например, между проводами разных фаз линии электропередачи), внешние поверхности твердой изоляции (изоляторов), промежутки между контактами разъединителя и т.п. К внутренней изоляции относится изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, конденсаторов, герметизированная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии, т.е. изоляция герметически изолированная от воздействия окружающей среды корпусом, оболочкой, баком и т.д. Внутренняя изоляция как правило представляет собой комбинацию различных диэлектриков (жидких и твердых, газообразных и твердых).
Важной особенностью внешней изоляции является ее способность восстанавливать свою электрическую прочность после устранения причины пробоя. Однако электрическая прочность внешней изоляции зависит от атмосферных условий: давления, температуры и влажности воздуха. На электрическую прочность изоляторов наружной установки влияют также загрязнения их поверхности и атмосферные осадки.
Особенностью внутренней изоляции электрооборудования является старение, т.е. ухудшение электрических характеристик в процессе эксплуатации. Вследствие диэлектрических потерь изоляция нагревается. Может произойти чрезмерный нагрев изоляции, который приведет к ее тепловому пробою. Под действием частичных разрядов, возникающих в газовых включениях, изоляция разрушается и загрязняется продуктами разложения. Пробой твердой и комбинированной изоляции - явление необратимое, приводящее к выходу из строя электрооборудования. Жидкая и внутренняя газовая изоляция самовосстанавливается, но ее характеристики ухудшаются. Необходимо постоянно контролировать состояние внутренней изоляции в процессе ее эксплуатации, чтобы выявить развивающийся в ней дефекты и предотвратить аварийный отказ электрооборудования
Улучшение технико-экономических показателей электрических машин в значительной степени определяется применением усовершенствованных материалов, в том числе электроизоляционных. Главными требованиями, предъявляемыми к электроизоляционным материалам, являются: надлежащая нагревостойкость, электрическая, механическая прочность и как можно меньшая толщина.
Материалы, применяемые в электромашиностроительной промышленности, в значительной степени определяют технические показатели электрических машин. Использование высококачественной стали позволяет существенно уменьшить вес и габариты машин и увеличить их к. п. д. Свойства изолирующих материалов и лаков ограничивают допустимые электромагнитные нагрузки. Толщина и нагревостойкость изоляционных материалов определяют степень использования электрических машин. Обычно изоляция занимает в среднем 30% общего объема паза, в котором заложены проводники обмотки. Уменьшение толщины изоляции позволяет увеличить объем проводников в пазу, а следовательно, увеличить мощность машины при сохранении ее габаритов. Повышенная нагревостойкость изоляционных материалов также позволяет увеличить нагрузку машины.
Технические показатели электрических машин и их надежность в значительной мере зависят не только от правильной конструкции и расчета, но и от правильного выбора магнитных и изолирующих материалов, их свойств и качеств, а также от материалов конструктивных элементов, обеспечивающих требуемую механическую прочность.
Применяемые в электропромышленности материалы делятся на три группы: конструктивные, активные и электроизоляционные.
Конструктивные и активные материалы. Из конструктивных материалов изготовляются части машины, несущие механическую нагрузку. В электромашиностроении применяются в основном те же конструктивные материалы, что и в общем машиностроении. К ним относятся сталь, чугун, цветные металлы и пластмассы.
Активные материалы служат для проведения магнитного потока машины и электрического тока и делятся на токопроводящие и магнитопроводящие.
В качестве основного токопроводящего материала до последнего времени использовалась медь, которая сравнительно недорога, имеет малое электрическое сопротивление, хорошо сваривается и обладает хорошими антикоррозийными свойствами. Однако медь дефицитна, поэтому в последние годы в качестве проводникового материала начали применять более дешевый и широко распространенный алюминий. Его достоинствами являются низкий удельный вес, более высокая проводимость на единицу веса, легкость механической обработки и хорошие антикоррозийные свойства. Недостатком алюминия является повышенное удельное электрическое сопротивление и плохая свариваемость. Вследствие повышенного удельного электрического сопротивления машины с алюминиевыми обмотками имеют большие габариты. В электромашиностроении широко применяют различные медные сплавы, например латунь, фосфористую бронзу и т. д.
К токопроводящим элементам следует отнести также щетки, при помощи которых осуществляется съем тока с вращающихся обмоток через контактные кольца или коллектор. Щетки обычно изготовляются на основе графита, угля или меди. Основным магнитопроводящим материалом является листовая легированная электротехническая сталь, содержащая от 2 до 5% кремния. Присадка кремния уменьшает потери на гистерезис. Вследствие увеличения удельного электрического сопротивления стали уменьшаются потери на вихревые токи. Сталь становится устойчивой к окислению и старению, но делается более хрупкой. В последние годы широко используется холоднокатаная текстурованная сталь с более высокими магнитными свойствами в направлении проката. Сердечник магнитопровода выполняется в виде пакета, собранного из листов штампованной стали. Толщина стального листа от 0,5 до 0,15 мм. Для проведения постоянного магнитного потока широко используется стальное литье и чугун.
Электроизоляционные материалы.Электроизоляционные материалы применяются для электрической изоляции токоведущих частей машины. Изоляция обмоточных проводников машины в значительной мере определяет ее технико-экономические показатели и эксплуатационные качества. От толщины изоляции существенно зависят габариты и вес машины. Применяемые изоляционные материалы должны иметь высокую электрическую прочность, быть нагрево-, влаго- и химически стойкими. Изоляция должна также обладать высокими удельными сопротивлениями и малыми диэлектрическими потерями. От твердых материалов требуется достаточная механическая прочность.
Проводниковые материалы. В электромашиностроении применяют медь и алюминий. Медь значительно дороже алюминия, однако ее используют для изготовления обмоток чаще, чем алюминий, так как она обладает более высокой электропроводностью (примерно в 1,6 раза), что позволяет сократить габариты машин. Для изготовления круглых и прямоугольных проводов обмоток электрических машин и трансформаторов применяют проводниковую медь высокой чистоты, получаемую в электролитических ваннах; она отличается весьма низким содержанием посторонних примесей (содержание меди 99,95 %).
Алюминиевые провода также применяют для изготовления обмоток вращающихся электрических машин, но только в том случае, когда эти обмотки имеют сравнительно малую тепловую нагрузку. Используют алюминий и для изготовления обмоток трансформаторов, где увеличение размера обмоток Меньше влияет на увеличение габаритов и массы, чем во вращающихся электрических машинах.
В качестве токопроводящего материала контактных колец и коллектора кроме меди применяют бронзу и даже сталь (для контактных колец), так как для этих деталей важна не только электропроводность, но и высокая механическая прочность.
Основные требования, предъявляемые к изоляции,— нагревостойкость, высокая электрическая прочность, влагостойкость, хорошая теплопроводность, высокая механическая прочность и эластичность.
Нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально составляет 15 — 20 лет. При нагреве изоляции возникают электрохимические и термические процессы, приводящие к ее старению, т. е. к потере изолирующих свойств и механической прочности.
Электроизоляционные материалы, применяемые в электромашиностроении, в зависимости от нагревостойкости подразделяют на семь классов: Y, А, Е, В, F, Н, С, характеристики которых приведены в таблице 1.2.
К классу Y относят текстильные и бумажные материалы, изготовленные из хлопка, натурального шелка, целлюлозы и полиамидов (ленты, бумага, картон, фибра), древесину и пластмассы с органическими наполнителями.
В класс А входят материалы класса Y, пропитанные изоляционным составом или погруженные в жидкие диэлектрики (натуральные смолы, масляные, асфальтовые, эфироцеллюлозные лаки, трансформаторное масло, термопластичные компаунды); лакоткани, изоляционные ленты, лакобумаги, электрокартон, гетинакс, текстолит, пропитанное дерево, древесные слоистые пластики, некоторые синтетические пленки, изоляция проводов типа ПБД, ПЭВЛО, ПЭЛШО и другие из хлопчатобумажной ткани, шелка и лавсана, эмалевая изоляция проводов типа ПЭЛ, ПЭМ, ПЭЛР и ПЭВД и др.
Класс Е составляют синтетические пленки и волокна, некоторые лакоткани на основе синтетических лаков, термореактивные синтетические смолы и компаунды (эпоксидные, полиэфирные, полиуретановые), изоляция проводов типа ПЛД, ПЭПЛО из лавсана, эмалевая изоляция проводов типа ПЭВТЛ, ПЭВТЛК и другие на основе полиуретановых и полиамидных смол.
В класс В включают материалы на основе слюды (миканиты, микаленты, слюдиниты, слюдопласты), стекловолокна (стеклоткани, стеклолакоткани) асбестовых волокон (пряжа, бумага, ткани) с бумажной, тканевой или органической подложкой; пленкостеклопласт «Изофлекс»; пластмассы с неорганическим наполнителем; слоистые пластики на основе стекловолокнистых и асбестовых материалов; термореактивные синтетические компаунды; эмалевая изоляция проводов типа ПЭТВ, ПЭТВД и другие на основе полиэфирных лаков и термопластических смол. Пропитывающими составами служат битумно-масляно-смоляные лаки на основе природных и синтетических смол.
Таблица 1.2 Классы нагревостойкости электроизоляционных материалов
Класс изоляции | Y | А | Е | В | F | Н | С |
Предельная допустимая температура при длительной работе, С0 | Более 180 |
Класс F содержит материалы, указанные в классе В,— из слюды, стекловолокна, асбеста, но без подложки или с неорганической подложкой; пленкостеклопласт «Имидофлекс», стекло-волокнистую и асбестовую изоляцию проводов типа ПСД, ПСДТ, а также эмалевую изоляцию проводов типа ПЭТ-155, ПЭТП-155, ПЭД на основе капрона. Пропитывающими составами служат термостойкие синтетические лаки и смолы.
Класс Н — это указанные в классе В материалы из слюды, стекловолокна и асбеста без подложки или с неорганической подложкой, кремнийорганические эластомеры, стекловолокнистая и асбестовая изоляция проводов типа ПСДК, ПСДКТ, эмалевая изоляция проводов типа ПЭТ-200, ПЭТП-200 и другие на основе кремнийорганнческих лаков; пропитывающими составами служат кремнийорганические лаки и смолы.
Класс С — слюда, стекло, стекловолокнистые материалы, электротехническая керамика, кварц, шифер, асбестоцемент, материалы из слюды без подложки или со стекловолокнистой подложкой, полиимидные и полифторэтиленовые пленки. Связующим составом служат кремнийорганические и элементоорганические лаки и смолы.
В настоящее время электрические машины с изоляцией класса А практически не изготовляют, а с изоляцией класса Б находят ограниченное применение — главным образом в машинах небольшой мощности. Применяют в основном изоляцию классов В и F, а в специальных машинах, работающих в тяжелых условиях (металлургия, горное оборудование, транспорт), — класса Н. В результате использования более нагревостойких материалов, улучшения свойств электротехнических сталей и улучшения конструкций за последние 60—70 лет удалось уменьшить массу электрических машин в 2,5 — 3 раза.
Наибольшей нагревостойкостью обладают стекловолокнистые и слюдяные материалы, содержащие кремнийорганические связующие и пропитывающие составы, эмалевая изоляция проводов на основе кремнийорганических лаков и синтетические пленки типа «Изофлекс», «Имидофлекс» и др. Они отличаются также высокой электрической и механической прочностью и влагостойкостью.
В электрических машинах широко используют обмоточные провода с эмалевой, волокнистой и комбинированной изоляцией. Класс нагревостойкости такой изоляции зависит от химического состава эмалевого лака, рода волокнистого материала и подклеивающего состава. В машинах постоянного тока средней и большой мощности используют литую изоляцию типа «монолит». Изоляция представляет собой сочетание стеклоткани и слюдинита с термореактивным компаундом, который вводят в обмотку и изоляцию под вакуумом с последующей опрессовкой. Подобного же рода изоляцию с термореактивным компаундом применяют и в машинах переменного тока. В настоящее время стоимость изоляции составляет 30—70% от стоимости всех материалов, идущих на изготовление электрической машины.
В трансформаторах с масляным охлаждением широко используют провода с изоляцией класса А; применение в них изоляционных материалов с большой нагревостойкостью нецелесообразно, так как допустимая температура обмоток определяется температурой трансформаторного масла (105 С0), относящегося к классу А. В трансформаторах с воздушным охлаждением широко используют обмоточные провода более высоких классов нагревостойкости В, F.
В электрических машинах различают межвитковую и корпусную изоляцию. Межвитковая изоляция (между витками обмотки) обеспечивается изоляцией самого проводника, наносимой на него в процессе изготовления на кабельных заводах или при изготовлении электрической машины. Корпусная изоляция отделяет проводники обмотки от корпуса электрической машины. Для нее используют различные прокладки, гильзы или ряд слоев изоляции, наносимой на соответствующую катушку до установки ее в машину.
Электрические щетки. Электрический контакт со скользящими поверхностями (контактными кольцами и коллектором) осуществляется с помощью щеток, представляющих собой прямоугольные бруски сложного состава, выполненные на графитовой основе. Многочисленные типы щеток различают по твердости, коэффициенту трения и падению напряжения под щетками. Обычно щетки подбирают экспериментально. Основные правила, которыми руководствуются при выборе щеток, следующие: для быстроходных машин постоянного тока применяют мягкие щетки со средним значением падения напряжения под ними (1,5-2,0 В); для машин постоянного тока с затрудненной коммутацией — твердые щетки с повышенным падением напряжения под ними (2,4—3,5 В); для контактных колец - металлографитные щетки с малым падением напряжения (0,1-0,5 В).