НАДПРОВІДНИКИ

Явище надпровідності полягає в тому, що при зниженні температури в ряді речовин спостерігається стрибкоподібне падіння електричного опору як мінімум на 10-12 порядків, тобто практично до нуля. Це означає, що створений у надпровідному колі електричний струм буде протікати нескінченно довго.

Надпровідність чисто квантове явище. Цікаво, що її теоретичне обгрунтування було отримане через 50 років після експериментального відкриття. В основі квантових уявлень теорії надпровідності лежить припущення про існування в цьому стані інтенсивної взаємодії виду електрон-фонон-електрон. У рамках класичних уявлень це означає утворення у надпровіднику електронних пар - куперовських пар. Електрон при своєму русі поляризує найближчий атом кристалічної ґратки. Електричний диполь, що утворюється при цьому, діє за допомогою свого поля на інший електрон. З розумінь симетрії очевидно, що інший електрон також взаємодіє з граткою і по суті діє на перший електрон. У такий спосіб через гратку (фонон) здійснюється взаємозв'язок між двома електронами, і рух електронних хвиль у періодичному полі ґратки виявляється взаємозалежним, узгодженим. Характерний розмір електронної пари виявляється на декілька порядків більше періоду кристалічної ґратки. Тоді розсіювання і руйнація пар є енергетичне невигідним процесом. Іншими словами, весь електронний ансамбль у надпровіднику рухається узгоджено, не взаємодіючи з граткою. Це і відображається в різкому падінні електричного опору.

По своїй фізичній сутності надпровідність є слідством створення за рахунок квантових ефектів більшого ступеня упорядкованості в матеріалі. В даний час запропонований цілий ряд теоретичних моделей надпровідності, наприклад, екситонна, сендвіч модель. Проте ці уявлення усе ще очікують свого експериментального підтвердження.

Надпровідність - явище надзвичайно чутливе до температури і зовнішнього магнітного поля. Якщо вплив температури на надпровідність досить очевидний (тепловий рух зруйнує куперовські пари), то дія магнітного поля на матеріал у надпровідному стані більш складна. Відзначимо, що дія магнітного поля на надпровідник особливо важлива, тому що струм, що протікає в матеріалі, створює своє власне магнітне поле. Експерименти показують, що для кожного надпровідника існує своє критичне значення поля, при якому це явище зникає. Таким чином, надпровідний стан існує у внутрішній області тривимірного простору координатних осей густини струму, температури і напруженості магнітного поля.

З висловлених теоретичних розумінь про механізм надпровідністі випливає, що підвищити температуру переходу в надпровідниковий стан і домогтися найширшого практичного застосування надпровідників можливо підвищенням кристалічної досконалості ґратки твердого тіла. Найбільших успіхів в підвищенні температури переходу в надпровідний стан цим шляхом удалося досягти в металевому сплаві МЬ-АІ-Ое (20,7К). У той же час останні експериментальні роботи виявили високотемпературний надпровідний стан у деяких керамічних шаруватих речовин, де дефектність матеріалу досить висока. Вперше ефект надпровідності в кераміці був виявлений у сполуці УВа2Сиз04. Після відкриття надпровідності у цього матеріалу на протязі буквально місяців був переборений "азотний" рубіж (77 К ) переходу в надпровідний стан. Цього вдалося домогтися шляхом варіації складу і технології термообробки кераміки.

В даний час через низькі температури фазового переходу в надпровідний стан застосування надпровідників усе ж обмежене. Найбільші перспективи пов'язуються з застосуванням багатошарової структури надпровідник-діелектрик-надпровідник (Джозефсонівський перехід). Експериментальне показано, що за рахунок тунельного ефекту через Джозефсонівський перехід може протікати електричний струм. Така система виявляє величезну чутливість до магнітного поля при своєму надзвичайно низькому енергоспоживанні. За своєю швидкодією і енергоспоживанням мікросхеми на ефекті Джозефсона на декілька порядків можуть бути більш ефективними чим їх напівпровідникові аналоги. Особливу актуальність розробки такого виду структур отримали після відкриття надпровідності в досить технологічних і дешевих керамічних матеріалах.

У медичній техніці надпровідники застосовуються для досліджень надшвидких магнітних полів. Зокрема, володіючи чутливістю в ІО'12^5 Тл, тобто в 1000 разів вищою будь-якого іншого відомого матеріалу, вперше вдалося виміряти магнітокардіограму серця. Очевидно, очікується, що, якщо так зване біополе має електромагнітну природу, то за допомогою надпровідників удасться визначити його структуру і параметри.

Відзначимо також, що абсолютні величини струмів, напруг і опорів, що вимірюються за допомогою джозефсонівських систем, досягають 10'15 В , 10"17 А і 10~12Ом відповідно. Похибка при цьому складає біля 10 %. Висока достовірність вимірів електричних параметрів таким методом дозволяє сподіватися на отримання кількісної інформації про електричні й електрохімічні процеси в біологічних системах.

З керамічними надпровідниками пов'язуються великі перспективи в створенні магнітних полів надвисокої напруженості. Це обумовлено можливістю без особливих труднощів збуджувати і підтримувати в електричному колі величезні струми. Наприклад, для створення поля напруженістю в 40 кА/см необхідний надпровідний дріт масою біля півтора кілограми, тоді як для конструкції такого електромагніту з міді і заліза необхідні тонни. У цьому відношенні розробка високотемпературних надпровідників повинна повністю змінити багато галузей промисловості.