Теплообмен излучением системы тел в прозрачной среде
Описание процесса излучения. Основные определения
ЛЕКЦИЯ 13
Тепловое излучение есть результат превращения внутренней энергии тел в энергию электромагнитных колебаний.
Тепловое излучение как процесс распространения электромагнитных волн характеризуется длиной волны l и частотой колебаний n=с/l, где с – скорость света (в вакууме с=3×108 м/с).
Тепловой поток, излучаемый на всех длинах волн с единицы поверхности тела по всем направлениям, называется поверхностной плотностью потока интегрального излучения Е, Вт/м2.
Часть энергии излучения Епад, падающего на тело, поглощается (Еа), часть отражается (ЕR) и частично проникает сквозь него (ЕD).
Таким образом,
Еа+ЕR+ED=Eпад.
Это уравнение теплового баланса можно записать в безразмерной форме:
A+R+D=1.
Величина А называется коэффициентом поглощения, R – коэффициентом отражения, D – коэффициентом пропускания.
Тело, поглощающее все падающее на него излучение, называется абсолютно черным. Для этого тела А=1. Тела для которых А<1 и не зависит от длины волны падающего излучения, называются серыми. Для абсолютно белого тела R=1, для абсолютно прозрачного D=1.
Сумма потоков собственного и отраженного телом излучения называется его эффективным излучением:
Еэф=Е+REпад.
Суммарный процесс взаимного испускания, поглощения, отражения и пропускания энергии излучения в системах тел называется лучистым теплообменом.
Поверхностная плотность потока интегрального излучения абсолютно черного тела в зависимости от его температуры описывается законом Стефана-Больцмана:
Е0=s0Т4.
Здесь s0=5,67×10-8 Вт/(м2×К4) – постоянная Стефана-Больцмана. Для технических расчетов закон Стефана-Больцмана обычно записывают в виде:
Е0=С0(Т/100)4.
Где С0=s0×108=5,67 Вт/(м2×К4) называется коэффициентом излучения абсолютно черного тела.
Тела, с которыми мы имеем дело на практике, излучают меньше тепловой энергии, чем абсолютно черное тело при той же температуре.
Отношение поверхностной плотности потока собственного интегрального излучения Е данного тела к поверхностной плотности потока интегрального излучения Е0 абсолютно черного тела при той же температуре называется степенью черноты этого тела:
e=Е/Е0.
Степень черноты e меняется для различных тел от нуля до единицы в зависимости от материала, состояния поверхности и температуры. Используя понятие степени черноты, можно записать закон Стефана-Больцмана для реального тела:
Е=e×Е0=e×С0(Т/100)4=С(Т/100)4.
Здесь С=e×С0 – коэффициент излучения реального тела, Вт/(м2×К4).
Рассмотрим теплообмен между двумя единичными поверхностями, обращенными друг к другу с небольшим зазором, причем Т1>Т2. В этой системе Е1 – энергия собственного излучения первого тела на второе, Е2 – второго на первое. Ввиду малого расстояния между ними практически все излучение каждой из рассматриваемых поверхностей попадает на противоположную. Воспользуемся понятием эффективного излучения Еэф, представленного выражением
Еэф=Е+REпад.
Для непрозрачного тела (D=0 и R=1-A) выражение Еэф=Е+REпад запишется в виде Еэф=Е+Eпад(1-А).
Каждое из рассматриваемых тел имеет эффективное (полное) излучение, соответственно Еэф1 и Еэф2. Для первого тела Еэф2 является падающим излучением, поэтому
Еэф1=Еэф1+Еэф2(1-А1)
Аналогично для первого тела
Еэф2=Еэф2+Еэф1(1-А2)
Плотность результирующего теплового потока от первого тела на второе равна
q1,2=Еэф1-Еэф2
Подставляя найденные из совместного решения уравнений выражение Еэф1 и Еэф2 в формулу q1,2=Еэф1-Еэф2 получаем
Заменим величины Е1 и Е2 по формуле Е=e×Е0=e×С0(Т/100)4=С(Т/100)4. Тогда
Будем считать что степень черноты обеих поверхностей не меняется в диапазоне температур от Т1 до Т2. Следовательно по закону Кирхгофа А1=e1 и А2=e2. Заменяя А на e и вынося e1e2с0, получаем:
величина =eпр называется приведенной степенью черноты системы тел. С учетом eпр и выражения формула для полного топливного потока записывается в виде
где F – площадь теплообменной поверхности одинаковая в нашем случае для обоих тел.
Из =eпр видно, что eпр меняется от нуля до единицы, оставаясь всегда меньше e1 и e2.
В соответствии с формулой полный поток теплоты, передаваемый излучением от горячего тела более холодному, пропорционален поверхности тела, приведенной степени черноты и разности четвертых степеней абсолютных температур тел.
На практике часто наблюдается одна теплообменная поверхность полностью охватываемая другой. В отличии от теплообмена между близко расположенными поверхностями с равными площадями здесь лишь часть излучения поверхности F2 попадает на F1. Остальная энергия воспринимается самой же поверхностью F2. Тепловой поток, передаваемый излучением от внутреннего тела к внешнему, можно также определить по формуле если вместо F подставить поверхность меньшего тела F1, а степень черноты системы определить по формуле:
В случае теплообмена между произвольными телами каждое из них излучает на другое лишь часть энергии, излучаемой им по всем направлениям; остальная энергия рассеивается в пространстве или попадает на другие тела. В этом случае в расчетную формулу вводится поправочный коэффициент, называемый коэффициентом облученности тела j1,2 и учитывающий долю излучения первого тела, которая воспринимается вторым телом.
Таким образом, теплообмен между двумя произвольно расположенными телами может быть рассчитан по формуле