Изменение энтропии в неравновесных процессах

Рассмотрим принципиальные отли­чия неравновесных процессов от равно­весных на примере расширения газа в цилиндре под поршнем, полу­чающего теплоту от источника с температурой T1 и совершающего рабо­ту против внешней силы Р, действующей на поршень.

Расширение будет равновесным толь­ко в случае, если температура газа Т равна температуре источника (Т=Т1), внешняя сила Р равна давлению газа на поршень (P=pF) и при расширении га­за нет ни внешнего, ни внутреннего тре­ния. Работа расширения газа в этом слу­чае равна , а изменение энтропии рабочего тела в таком процессе .

Невыполнение хотя бы одного из ука­занных условий делает расширение газа неравновесным. Если неравновесность вызвана трением поршня о стенки ци­линдра, то работа , совершаемая про­тив внешней силы Р, оказывается мень­ше, чем pdv, так как часть ее затрачива­ется на преодоление трения и переходит в теплоту . Она воспринимается га­зом вместе с подведенной теплотой q, в результате чего возрастание энтропии газа в неравновесном процессе оказывается больше, чем в равновесном при том же количест­ве подведенной от источника теплоты .

 


Рисунок 4.6 - К определению изменения энтро­пии в неравновесных процессах

 

Если неравновесность вызвана отсутствием механического равновесия (P<pF), поршень будет двигаться ускоренно. Быстрое движение поршня вызывает появление вихрей в газе, за­тухающих под действием внутреннего трения, в результате чего часть работы расширения опять превращается в теп­лоту . Работа против внешней силы снова получается меньше, а возраста­ние энтропии — больше, чем в равно­весном процессе с тем же количеством теплоты .

Если неравновесность вызвана теп­лообменом при конечной разности темпе­ратур (температура газа Т меньше тем­пературы источника T1), то возрастание энтропии рабочего тела оказы­вается больше, чем в равновесном процессе из-за снижения температуры газа. При том же положе­нии поршня, т. е. заданном удельном объеме v, меньшей температуре газа со­ответствует меньшее его давление р. Со­ответственно меньше должна быть и уравновешивающая сила Р': Р'=p'F<P=pF. Работа расширения про­тив этой силы .

Итак, неравновесность всегда приво­дит к увеличению энтропии рабочего те­ла при том же количестве подведенной теплоты и к потере части работы. В об­щем виде это можно записать следую­щим образом:

; ,

Причем и всегда положительны.

Ранее было показано, что для равно­весных процессов справедливо соотноше­ние . Разобранный пример до­статочно наглядно показывает, что в не­равновесных процессах , если — количество подведенной к системе или отведенной от нее теплоты, а T — температура источника теплоты. Обе за­писи являются аналитическими выраже­ниями второго закона термодинамики:

— в равновесных процессах;

— в неравновесных процессах.

Для изолированных систем, которые по определению не обмениваются тепло­той с окружающей средой , эти выражения приобретают вид

.

Если в адиабатно-изолированной системе осуществляются равновесные процессы, то энтропия системы остается постоянной.

Самопроизвольные (а значит, и не­равновесные) процессы в изолированной системе всегда приводят к увеличению энтропии. Это положение представляет собой наиболее общую формулировку второго начала термодинамики для не­равновесных процессов, известную под названием принципа возраста­ния энтропии.

Следует подчеркнуть, что последнее неравенст­во применимо только к изолиро­ванным системам. Если от системы отво­дится теплота, то ее энтропия может убывать, однако суммарное изменение энтропии системы и энтропии внешних тел всегда положительно (либо равно нулю, если в системе протекают равно­весные процессы).

Когда изолированная система нахо­дится в состоянии с максимальной энтро­пией, то в ней не могут протекать ни­какие самопроизвольные процессы, по­тому что любой самопроизвольный про­цесс неравновесен и сопровождается увеличением энтропии. Поэтому состоя­ние изолированной системы с максималь­ной энтропией является состоянием ее устойчивого равновесия, и самопроиз­вольные процессы могут протекать в изо­лированной системе лишь до тех пор, пока она не достигнет состояния равно­весия.