ЛЕКЦИЯ 1

ВВЕДЕНИЕ

 

В последние годы ученые всего мира со все большим беспокойством говорят о повышении концентрации СО2 в атмосфере. Если эти опасения подтвердятся, человечеству в не таком уж отдаленном будущем придется резко ограничить потребление углеродсодержащих топлив. Кроме выбросов СО2 топливосжигающие и теплоэнергетические установки производят тепловые загрязнения (выбросы нагретой воды и газов), химические (оксиды серы и азота), золу и сажу, которые с увеличением масштаба производства также создают серьезные проблемы.

Однако экономические факторы стимулируют резкое увеличение степени использования добываемого топлива. Вместе с тем пока еще энергетическая эффективность многих технологических процессов чрезвычайно низка, ибо технологи, разрабатывая соответствующие процессы, зачастую не ставили во главу угла вопросы экономии топлива.

Высокие цены на топливо (прежде всего нефть) на мировом рынке стимулируют разработку энергосберегающих технологий. Главная роль в разработке менее энергоемких технологий принадлежит технологам. Эту задачу невозможно решить без глубоких знаний основных законов теплотехники.

Сегодня выгоднее вкладывать средства не в увеличение добычи топлива, чтобы продолжать расходовать его с низкой эффективностью, а в разработку технологических процессов, обеспечивающих более экономное его использование. В целом более 90 % всей используемой человечеством энергии приходится на ископаемые органические топлива. Это определяет роль теплотехники – общеинженерной дисциплины, изучающей методы получения, преобразования, передачи, и использования теплоты и связанных с этим аппаратов и устройств.

 

 

Предмет и метод термодинамики

Термодинамика изучает зако­ны превращения энергии в различных процессах, происходящих в макроскопи­ческих системах и сопровождающихся тепловыми эффектами. Макроскопиче­ской системой называется любой матери­альный объект, состоящий из большого числа частиц. Размеры макроскопиче­ских систем несоизмеримо больше разме­ров молекул и атомов.

В зависимости от задач исследования рассматривают техническую или химиче­скую термодинамику, термодинамику биологических систем и т. д. Техническая термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и свой­ства тел, участвующих в этих превраще­ниях. Вместе с теорией теплообмена она является теоретическим фундаментом теплотехники. На ее основе осуществля­ют расчет и проектирование всех тепло­вых двигателей, а также всевозможного технологического оборудования.

Рассматривая только макроскопиче­ские системы, термодинамика изучает закономерности тепловой формы движе­ния материи, обусловленные наличием огромного числа непрерывно движущих­ся и взаимодействующих между собой микроструктурных частиц (молекул, ато­мов, ионов).

Физические свойства макроскопиче­ских систем изучаются статистическими термодинамическим методами. Стати­стический метод основан на использова­нии теории вероятностей и определенных моделей строения этих систем и пред­ставляет собой содержание статистиче­ской физики. Термодинамический метод не требует привлечения модельных пред­ставлений о структуре вещества и является феноменологическим (т. е. рассматривает «феномены» — яв­ления в целом).

При этом все основные выводы термодинамики можно получить методом дедукции, используя только два основных эмпирических закона термодинамики.

В дальнейшем исходя из термодина­мического метода мы будем для нагляд­ности использовать молекулярно-кинетические представления о структуре ве­щества.