Пример решения задачи 1.3

Дано: схема шарнирно - стержневой системы, представленная на Рисунке 2.7: F=100 кН, а = 1,2 м, φ=45о, b = 0,8 м; материал – сталь: модуль упругости Е = 2×105 МПа, допускаемое напряжение [σ]= 100 МПа, коэффициент температурного расширения α = 12,5×10-6 1/градус.

Требуется определить:

1) размеры квадратного поперечного сечения стержней, полагая, что поперечное сечение у одного из стержней в два раза больше, чем у другого;

2) напряжения в стержнях:

☺ от действия силы F;

☺ от неточности монтажа, если считать, что один из стержней выполнен короче на величину Δ= 0,2 мм;

☺ от изменения температуры на Δt= 20°С.

Решение:

А. Определение необходимой по условию прочности площади поперечного сечения стержней и фактических напряжений при действии силы F

1) Степень статической неопределимости.

Освободим жесткую балку AD от внешних связей, заменив их неизвестными реакциями в шарнире A и продольными усилиями стержней N1и N2 (Рисунок 2.7).

 

 

Рисунок 2.7 – Шарнирно – стержневая система

 

,

где nH =4 – число неизвестных сил; ny=3 – число уравнений статического равновесия.

Система один раз статически неопределима.

2) Раскрытие статической неопределимости – определение продольных сил в упругих стержнях.

Статическая сторона задачи.

Составляем уравнения статического равновесия, т.к. реакции определять ненужно, то остается одно уравнение:

 

или (1)

Геометрическая сторона задачи.

Составляем деформированную схему системы и сопоставляя ее с исходной имеем (Рисунок 2.8):

 

 

а) исходная и деформированная схемы системы; б) деформация стержня I

Рисунок 2.8

 

 

 

(2)

Физическая сторона задачи.

Согласно закону Гука можно записать

(3)

Синтез решения.

Подставляя выражение физической стороны задачи (3) в выражение из геометрической стороны задачи (2) и преобразуя, имеем:

(4)

Составляем систему уравнений из полученного выражения (4) и уравнения моментов из статической стороны задачи (1)

.

Решая эту систему с известными исходными данными, получаем:

кН; кН.

3) Определение площадей поперечного сечения стержней

Определим, какой из стержней нагружен сильнее. По закону Гука

 

Второй стержень является более нагруженным, так как σ1< σ2, поэтому определим площадь поперечного сечения по условию прочности для стержня 2

 

или

мм2.

Сторона квадрата сечения мм.

Подбираем размер по ГОСТ6636-69 (Приложение С4) d=26 мм. Тогда, A= 676мм2.

4) Определение фактических напряжений в стержнях от внешних сил

МПа;

МПа.

Первый стержень работает на сжатие, а второй – на растяжение.

В. Определение фактических напряжений от неточности монтажа

Будем считать, что короткий стержень выполнен короче на величину Δ= 0,2 мм, сила - F отсутствует (см. Рисунок 2.9).

Статическая сторона задачи.

Составляем уравнения статического равновесия, т.к. реакции определять ненужно, то остается одно уравнение:

 

или (5)

Геометрическая сторона задачи

 

 

(6)

Рисунок 2.9

Физическая сторона задачи

(7)

Синтез

(8)

Составляем систему уравнений из полученного выражения (8) и уравнения моментов из статической стороны задачи (5)

.

Решая эту систему с известными исходными данными, получаем:

кН; кН

Определение фактических напряжений в стержнях от монтажных неточностей

МПа;

МПа.

Оба стержня работают на растяжение.

С. Определение фактических напряжений от изменения температуры

Будем считать, что температура системы повышается. Тогда оба стержня будут удлиняться от повышения температуры. При удлинении стержней, они будут воздействовать друг на друга через недеформируемый стержень АС. Вследствие этого, в обоих стержнях будут возникать дополнительные силы сжатия (рисунок 2.10).

 

Рисунок 2.10

 

Статическая сторона задачи.

Составляем уравнения статического равновесия, т.к. реакции определять ненужно, то остается одно уравнение:

 

или (9)

Геометрическая сторона задачи

 

 

(10)

Физическая сторона задачи.

Согласно закону Гука можно записать

(11)

Синтез

 

(12)

Составляем систему уравнений из полученного выражения (12) и уравнения моментов из статической стороны задачи (9)

.

Решая эту систему с известными исходными данными, получаем:

кН; кН

Определение фактических напряжений в стержнях от нагрева

МПа;

МПа.

Оба стержня работают на сжатие.