Гибридизация электронных облаков

Кратность ковалентной связи

Для ковалентной связи возможны случаи, когда два атома в молекуле связаны не одной связью, а двумя и более, то есть образуется не одна общая электронная пара, а несколько. Примером могут служить молекулы N2, O2, CH2=CH2 (этилен), ацетилена. При образовании кратных связей одна из них будет σ, а другие π. В первую очередь образуется σ-связь, как более прочная связь.

Часто атомы формируют свои связи за счет электронов различных подуровней. Рассмотрим пример образования молекулы BeCl2 .

В нормальном состоянии бериллий не может принимать участие в образовании химических связей,в связи с отсутствием неспаренных электронов. Но, так как, у бериллия есть свободный p-подуровень, возможен переход атома в возбужденное состояние, которое характеризуется распариванием электронов и переходом одного их них с s- на p-подуровень.

       
s   p    

 

↓↑

4Be:.. 2s2 → Be*: 2s1 2p1

 

Имея два неспаренных электрона, атом бериллия способен к образованию двух связей по обменному механизму.

Образующиеся связи должны быть разными по энергии, так как электроны находятся на разных подуровнях. Однако, экспериментально доказано, что обе связи совершенно одинаковы. Следовательно, при образовании химических связей происходит выравнивание атомных орбиталей по энергии и форме. Этот процесс получил название – гибридизация, а «выровненные» орбитали называют гибридными.

Случай гибридизации одной s- и одной p- орбитали называется sp-гибридизацией.

Для sp-гибридизации характерна линейная структура молекулы, валентный угол 180°.Такой вид гибридизации наблюдается у элементов II группы.

Например: молекула хлорида бериллия BeCl2 - атом бериллия для образования двух связей с атомами хлора переходит в возбужденное состояние (как показано выше). В результате электронные облака одного s-(сферической форы) и одного р-электрона (имеющего фору объемной восьмерки) подвергаются -гибридизации, в результате которой образуются два гибридных облака, располагающихся в пространстве под углом 1800:

 

У каждого из двух атомов хлора не происходит гибридизации, так как имеется по одному необходимому неспаренному электрону (так как электрон находится на р-подуровне, форма его электронного облака - объемная восьмерка) для образования связи с бериллием:

↑↓ ↑↓ ↑↓

17Cl:… 3s2 3p5:

При гибридизации одной s- и двух p- орбиталей (sp2-гибридизация) образуются три равноценные гибридные орбитали, которые располагаются под углом 1200 в одной плоскости. Такая гибридизация характерна для элементов III группы.

Например: молекула хлорида бора BCl3 5B→2s2 2p1 5B*→2s12p2

       
s   p    
     
s   p    

 

 


В sp3-гибридизация участвуют одна s- и три p- орбитали, в результате образуются четыре гибридные орбитали. Данный тип гибридизации характерен для элементов IV группы.

Например: молекула метана CH4 6C : 2s2 2p2 С*:2s12p3

ковалентность = 2 ковалентность = 4

     
s   p    

 

   
s   p    

 

 

 

Таким образом, основные положения теории гибридизации:

1. В гибридизации участвуют орбитали разных подуровней одного уровня.

2. Число гибридных орбиталей равно числу чистых орбиталей, участвующих в гибридизации.

3. Гибридные орбитали более вытянуты в направлении образования химических связей и поэтому обеспечивают лучшее перекрывание электронных облаков.