Тиристоры.

Тиристор — полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три (или более) выпрямляющих перехода, который может переключаться из закрытого состояния в открытое и наоборот. Различают диодные (неуправляемые) и триодные (управляемые) тиристоры. Диодный тиристор называют динистором, а триодный — тринистором.

 

 

Рис. 10.14. Схема включения динистора

 

Динистор, условное обозначение которого приведено на рис. 10.0,14, представляет собой двухполюсную четырехслойную р-n-р-n-структуру. Электрод, обеспечивающий электрическую связь с внешней n-областью, называется катодом, а с внешней р-областью — анодом. С учетом знаков приложенного к структуре внешнего напряжения переходы 1 и 3 смещены в прямом направлении, а все напряжение падает на переходе 2, который работает в режиме коллектора. Рассматриваемую структуру динистора можно представить состоящей из двух транзисторов р1-n1-р2 и n2-р2-n1, у которых области n1 и р2 условно разделены (рис. 10.14). Переход 1 представляет собой эмиттерный переход первого транзистора, через который дырки инжектируют из р1-области в область n1, выполняющую роль базы для этого транзистора. Пройдя базу и коллекторный переход 2, инжектированные дырки появляются в коллекторе p2 первого транзистора, который в то же время служит базой второго транзистора. Этот ток определяется выражением

 

 

где IpК0 — обратный дырочный ток коллекторного перехода; α1— коэффициент передачи тока эмиттера первого транзистора.

 

Появление дырок в базе р2 второго транзистора (n2-p2-n1) приводит к образованию нескомпенсированного объемного заряда. Этот заряд, понижая высоту потенциального барьера эмиттерного перехода 3 второго транзистора, вызывает встречную инжекцию электронов из эмиттерной области n2 второго транзистора в область р2, являющуюся базой для второго транзистора и коллектором для первого. Инжектированные электроны проходят через коллекторный переход 2 и попадают в коллектор n1 второго транзистора, служащий одновременно базой первого транзистора (р1-n1-р2). Величина электронного тока равна

 

где InК0 —обратный электронный ток коллекторного перехода; α2 — коэффициент передачи тока эмиттера второго транзистора.

 

Учитывая, что дырки и электроны движутся навстречу друг-другу, суммарный ток рассматриваемой структуры равен

 

где IКБ0 — суммарный обратный ток двух р-n-переходов динистора, α — суммарный коэффициент передачи тока.

Решая полученное выражение относительно Iн получают

(10.9)

Как видно из (10.9), при

 

 

Данное условие является условием переключения динистора. Физически это означает, что при α=1 инжекция электронов в область n1 приводит к появлению нескомпенсированного объемного заряда, который, понижая высоту потенциального барьера перехода 1, вызывает встречную вторичную инжекцию дырок из области р1 в область n1. Далее процесс повторяется, и ток в контуре эквивалентных транзисторов лавинообразно возрастает. При изменении полярности напряжения, приложенного к рассматриваемой структуре, на обратную переходы 1 и 3 окажутся смещенными в обратном направлении. Если эти переходы достаточно высоковольтные, то вольт-амперная характеристика динистора имеет вид обратной ветви ВАХ диода.

 

Рис. 10.15. Вольт-амперные характеристики динистора и вагрузочвого резистора (I — открытое состояние, II — область отрицательногосопротивления, III — закрытое состояние, IV — область высокого сопротивления, V — область пробоя)

 

Описанные процессы определяют ВАХ динистора, показанную на рис. 10.15, на прямой ветви которой можно выделить две устойчивые зоны: область III с малыми значениями тока Iн при больших значениях напряжения Uα, и область отпирания I с большими токами Iн, при малых напряжениях Uα. Точки А и В соответствуют выполнению условия α=1 и называются соответственно точками включения и удержания динистора, а соответствующие им токи называются током включения (Iвкл) и током удержания (Iуд). Между точками А и В лежит зона II, в которой динистор обладает отрицательным дифференциальным сопротивлением. В соответствии со вторым законом Кирхгофа для схемы, представленной на рис. 10.14, имеем

 

Решением этого уравнения будет точка пересечения линии нагрузки Rн и ВАХ динистора (рабочая точка). Если напряжение Uα на динисторе (рис. 10.15) достигает значения напряжения включения Uвкл, рабочая точка скачкообразно переходит из состояния А в А'. При уменьшении напряжения рабочая точка из В скачкообразно переходит в В'.

Обратная ветвь ВАХ динистора может быть разделена на две области: IV (область обратного смещения) и V (область пробоя структуры).

Таким образом, управление током Iн динистора возможно только за счет изменения величины и направления напряжения внешнего источника, приложенного между анодом и катодом прибора.

 

Тринистор представляет собой четырехслойную полупроводниковую структуру, в которой одна из базовых областей сделана управляющей (рис. 10.16). В зависимости от того, база какого условного транзистора сделана управляющей, различают тринисторы с анодным и катодным управлением. Базовый вывод дает возможность управлять током близлежащего эмиттера. Для этого на управляющий электрод (УЭ) необходимо подать напряжение такой полярности, которая обеспечит отпирание соответствующего эмиттерного перехода. В этом случае процессы отпирания и запирания тиристора, т. е. управление его током Iн, осуществляют не за счет изменения приложенного между анодом и катодом напряжения внешнего источника (как у динистора), а за счет изменения напряжения на управляющем электроде, который является, как видно из рис. 10.16, входным электродом включенного в электрическую цепь тринистора. На рис. 10.17 приведены ВАХ тринистора, а на рис. 10.0, 15, 16 — его условные обозначения. Как видно из рис. 10.17, с возрастанием Uупр (а следовательно, Iупр) уменьшается напряжение включения тринистора и при достаточно большом значении Iупр вид прямой ветви ВАХ тринистора будет аналогичен виду прямой ветви ВАХ диода.

 

 

Рис. 10.16. Схема включения тринистора

 

 

Рис. 10.17. Вольт-амперные характеристики тринистора