Сопротивление в цепи синусоидального тока

Изображение синусоидальных функций времени в комплексной форме

При расчетах цепей синусоидального тока используют символический метод расчета или метод комплексных амплитуд. В этом методе сложение двух синусоидальных токов заменяют сложением двух комплексных чисел, соответствующих этим токам.

Из курса математики известно, что комплексное число может быть записано в показательной или алгебраической форме:

 

где с - модуль комплексного числа;

φ- аргумент;

a - вещественная часть комплексного числа;

b - мнимая часть;

j - мнимая единица, j = √-1.

С помощью формулы Эйлера можно перейти от показательной формы записи к алгебраической.

 

 

От алгебраической формы записи переходят к показательной форме с помощью формул:

 

Комплексное число может быть представлено в виде радиус - вектора в комплексной плоскости. Вектор длиной, равной модулю c, расположен в начальный момент времени под углом φ относительно вещественной оси (рис.6.3).

Умножим комплексное число на множитель .

Радиус - вектор на комплексной плоскости повернется на угол β.

Множитель называется поворотным.

Рис.6.3

 

Если , то вектор, умноженный на , превратится во вращающийся со скоростью ω радиус - вектор.

Выражение называется комплексной функцией времени.

Применительно к напряжению, получим - комплексную функцию времени для напряжения.

- комплексная амплитуда напряжения (исходное положение вектора в комплексной плоскости). Определим, чему равна мнимая часть комплексной функции времени для напряжения.

 

Мгновенное синусоидальное напряжение (ток, ЭДС) является мнимой частью соответствующей комплексной функции времени.

Замечание. В электротехнике над символами, изображающими комплексные напряжения, токи, ЭДС, принято ставить точку.

Синусоидальные функции времени могут быть представлены векторами в комплексной плоскости, вращающимися против часовой стрелки с постоянной угловой скоростью ω. Проекция вектора на мнимую ось изменяется по синусоидальному закону.

Пример.

 

 

Сложение синусоидальных токов заменим сложением комплексных амплитуд, соответствующих этим токам.

 

 

Амплитуда результирующего тока , начальная фаза - .

Мгновенное значение результирующего тока

.

Законы Ома и Кирхгофа в комплексной форме:

- закон Ома; (6.4)

- первый закон Кирхгофа; (6.5)

- второй закон Кирхгофа. (6.6)

Если напряжение подключить к сопротивлению R, то через него протекает ток

(6.7)

Анализ выражения (6.7) показывает, что напряжение на сопротивлении и ток, протекающий через него, совпадают по фазе.

Формула (6.7) в комплексной форме записи имеет вид

(6.8)

где и - комплексные амплитуды тока и напряжения.

Комплексному уравнению (6.8) соответствует векторная диаграмма (рис. 6.4). Из анализа диаграммы следует, что векторы напряжения и тока совпадают по направлению.

Рис.6.4

Сопротивление участка цепи постоянному току называется омическим, а сопротивление того же участка переменному току - активным сопротивлением.

Активное сопротивление больше омического из-за явления поверхностного эффекта. Поверхностный эффект заключается в том, что ток вытесняется из центральных частей к периферии сечения проводника.