Определение: вес
Правило корректного веса
Правильно построенное стековое выражение e, не содержащее ни item, ни empty, является корректным тогда и только тогда, когда его вес неотрицателен и каждое его подвыражение является (по индукции) корректным.
Здесь "вес" выражения представляет число элементов в соответствующем стеке, это значение также совпадает с разностью между числом вложенных вхождений функций put и remove. Приведем точное определение этого понятия:
Вес правильно построенного стекового выражения, не содержащего ни item, ни empty, определяется по индукции следующим образом:
- (W1) Вес выражения new равен 0.
- (W2) Вес выражения put (s, x) равен ws + 1, где ws - это вес s.
- (W3) Вес выражения remove (s) равен ws - 1, где ws - это вес s.
Содержательно, правило корректного веса утверждает, что стековое выражение корректно тогда и только тогда, когда в нем самом и в каждом из его подвыражений имеется не меньше операций put (вставляющих элементы в стек), чем операций remove (выталкивающих элементы с вершины стека). Если рассмотреть такое выражение как представление некоторого вычисления над стеком, то это означает, что мы никогда не будем пытаться вытолкнуть больше элементов, чем втолкнули. Напомним, что на этом этапе мы сосредоточились на функциях put и remove, оставив в стороне запросы item и empty.
Интуитивно сформулированное правило выглядит верным, но нам следует все же доказать, что оно имеет место. Удобно ввести еще одно вспомогательное правило и одновременно доказывать справедливость обоих этих правил: