Следствие.

Свойство 3.

Свойство 2.

Свойство 4. при

Свойство 5. Если f(x)>0 вблизи точки х = а и , то А>0.

Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.

Свойство 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и .

Определение. Функция f(x) называется ограниченнойвблизи точки х = а, если существует такое число М>0, что ïf(x)ï<M вблизи точки х = а.

Свойство 7. Если функция f(x) имеет конечный предел при х®а, то она ограничена вблизи точки х = а.

 

Бесконечно малые функции.

Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет.

Пример. Функция f(x) = xn является бесконечно малой при х®0 и не является бесконечно малой при х®1, т.к. .

Теорема. Для того, чтобы функция f(x) при х®а имела предел, равный А, необходимо и достаточно, чтобы вблизи точки х = а выполнялось условие

f(x) = A + a(x),

где a(х) – бесконечно малая при х ® а (a(х)®0 при х ® а).

Свойства бесконечно малых функций:

1) Сумма фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

2) Произведение фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

3) Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а является бесконечно малой функцией при х®а.

4) Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть величина бесконечно малая.

Бесконечно большие функции и их связь с бесконечно малыми.

Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует такое число D>0, что неравенство

ïf(x)ï>M

выполняется при всех х, удовлетворяющих условию

0 < ïx - aï < D

Записывается .

Собственно, если в приведенном выше определении заменить условие ïf(x)ï>M на f(x)>M, то получим:

а если заменить на f(x)<M, то:

Графически приведенные выше случаи можно проиллюстрировать следующим образом:

 

 


a x a x a x

 

 

Определение. Функция называется бесконечно большойпри х®а, где а – число или одна из величин ¥, +¥ или -¥, если , где А – число или одна из величин ¥, +¥ или -¥.

Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со следующей теоремой.

Теорема. Если f(x)®0 при х®а (если х®¥ ) и не обращается в ноль, то

 

Сравнение бесконечно малых функций.

Пусть a(х), b(х) и g(х) – бесконечно малые функции при х ® а. Будем обозначать эти функции a, b и g соответственно. Эти бесконечно малые функции можно сравнивать по быстроте их убывания, т.е. по быстроте их стремления к нулю.

Например, функция f(x) = x10 стремится к нулю быстрее, чем функция f(x) = x.

Определение. Если , то функция a называется бесконечно малой более высокого порядка, чем функция b.

Определение. Если , то a и b называются бесконечно малыми одного порядка.

Определение. Если то функции a и b называются эквивалентными бесконечно малыми. Записывают a ~ b.

Пример. Сравним бесконечно малые при х®0 функции f(x) = x10 и f(x) = x.

 

т.е. функция f(x) = x10 – бесконечно малая более высокого порядка, чем f(x) = x.

Определение. Бесконечно малая функция a называется бесконечно малой порядка kотносительно бесконечно малой функции b, если предел конечен и отличен от нуля.

Однако следует отметить, что не все бесконечно малые функции можно сравнивать между собой. Например, если отношение не имеет предела, то функции несравнимы.

Пример. Если , то при х®0 , т.е. функция a - бесконечно малая порядка 2 относительно функции b.

Пример. Если , то при х®0 не существует, т.е. функция a и b несравнимы.

 

Свойства эквивалентных бесконечно малых.

1) a ~ a,

2) Если a ~ b и b ~ g, то a ~ g,

3) Если a ~ b, то b ~ a,

4) Если a ~ a1 и b ~ b1 и , то и или .

Следствие: а) если a ~ a1 и , то и

б) если b ~ b1 и , то

Некоторые замечательные пределы.

, где P(x) = a0xn + a1xn-1 +…+an, Q(x) = b0xm + b1xm-1 +…+bm - многочлены.

Тогда:

Первый замечательный предел:

Второй замечательный предел:

Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:

 

Непрерывность функции в точке.

Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точкех0, если предел функции и ее значение в этой точке равны, т.е.

 

Тот же факт можно записать иначе:

Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.

 

Пример непрерывной функции:

 

y

 

f(x0)+e

f(x0)

f(x0)-e

0 x0-D x0 x0+D x

 

 


Пример разрывной функции:

 

y

f(x0)+e

f(x0)

f(x0)-e

x0 x

 

 

Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию

 

верно неравенство .

Определение. Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.

f(x) = f(x0) + a(x)

где a(х) – бесконечно малая при х®х0.

Свойства непрерывных функций.

1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0.

2) Частное двух непрерывных функций – есть непрерывная функция при условии, что g(x) не равна нулю в точке х0.

3) Суперпозиция непрерывных функций – есть непрерывная функция.

Это свойство может быть записано следующим образом:

Если u = f(x), v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывная функция в этой точке.

 

Непрерывность некоторых элементарных функций.

1) Функция f(x) = C, C = const – непрерывная функция на всей области определения.

2) Рациональная функция непрерывна для всех значений х, кроме тех, при которых знаменатель обращается в ноль. Таким образом, функция этого вида непрерывна на всей области определения.

3) Тригонометрические функции sin и cos непрерывны на своей области определения.

 

Точки разрыва и их классификация.

Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.

Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.

Если односторонний предел (см. выше) , то функция называется непрерывной справа.

 

 

 


х0

Если односторонний предел (см. выше) , то функция называется непрерывной слева.

 

 


х0

 

 

Определение. Точка х0 называется точкой разрывафункции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке.

Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

 

Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее.

Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимойточкой разрыва, но подробнее об этом поговорим ниже.

Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.

Пример. Функция f(x) = имеет в точке х0 = 0 точку разрыва 2 – го рода, т.к. .

 

Пример. f(x) =

Функция не определена в точке х = 0, но имеет в ней конечный предел , т.е. в точке х = 0 функция имеет точку разрыва 1 – го рода. Это – устранимая точка разрыва, т.к. если доопределить функцию:

 

График этой функции:

 

 

 

Пример. f(x) = =

 

y

 

 

 

0 x

 

-1

 

 

Эта функция также обозначается sign(x) – знак х. В точке х = 0 функция не определена. Т.к. левый и правый пределы функции различны, то точка разрыва – 1 – го рода. Если доопределить функцию в точке х = 0, положив f(0) = 1, то функция будет непрерывна справа, если положить f(0) = -1, то функция будет непрерывной слева, если положить f(x) равное какому- либо числу, отличному от 1 или –1, то функция не будет непрерывна ни слева, ни справа, но во всех случаях тем не менее будет иметь в точке х = 0 разрыв 1 – го рода. В этом примере точка разрыва 1 – го рода не является устранимой.

Таким образом, для того, чтобы точка разрыва 1 – го рода была устранимой, необходимо, чтобы односторонние пределы справа и слева были конечны и равны, а функция была бы в этой точке не определена.

 

Непрерывность функции на интервале и на отрезке.

Определение. Функция f(x) называется непрерывной на интервале (отрезке), если она непрерывна в любой точке интервала (отрезка).

 

При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала.

Свойства функций, непрерывных на отрезке.

Свойство 1: Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] выполняется условие –M £ f(x) £ M.

Свойство 2: Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения х1 и х2, что f(x1) = m, f(x2) = M, причем

m £ f(x) £ M

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – f(x) = sinx).

Разность между наибольшим и наименьшим значением функции на отрезке называется колебаниемфункции на отрезке.

Свойство 3: Функция, непрерывная на отрезке [a, b], принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция f(x) непрерывна в точке х = х0, то существует некоторая окрестность точки х0, в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x)- непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0.

Определение. Функция f(x) называется равномерно непрерывной на отрезке [a, b], если для любого e>0 существует D>0 такое, что для любых точек х1Î[a,b] и x2Î[a,b] таких, что

ïх2 – х1ï< D

верно неравенство ïf(x2) – f(x1)ï < e

 

Отличие равномерной непрерывности от “обычной” в том, что для любого e существует свое D, не зависящее от х, а при “обычной” непрерывности D зависит от e и х.

Свойство 6: Функция, непрерывная на отрезке, равномерно непрерывна на нем.

(Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.)

Пример.

 

Функция непрерывна на интервале (0, а), но не является на нем равномерно непрерывной, т.к. существует такое число D>0 такое, что существуют значения х1 и х2 такие, чтоïf(x1) – f(x2)ï>e, e - любое число при условии, что х1 и х2 близки к нулю.

Свойство 7: Если функция f(x) определена, монотонна и непрерывна на некотором промежутке, то и обратная ей функция х = g(y) тоже однозначна, монотонна и непрерывна.