Приступим к решению типового примера.

Даны векторы (1; 2; 3), (-1; 0; 3), (2; 1; -1) и (3; 2; 2) в некотором базисе. Показать, что векторы , и образуют базис и найти координаты вектора в этом базисе.

Решение. Векторы образуют базис, если они линейно независимы, другими словами, если уравнения, входящие в систему:

– линейно независимы.

Тогда

. (1)

Это условие выполняется, если определитель матрицы системы отличен от нуля.

 

В самом деле, .

Запишем уравнение (1) в виде системы .

Для решения этой системы воспользуемся методом Крамера.

 

D1 =

;

D2 =

 

D3 =

 

Итак, координаты вектора в базисе , , : =( -1/4, 7/4, 5/2).

Ответ: =( -1/4, 7/4, 5/2).

 

Задача 3.

Для решения задачи 3 к уже имеющемуся материалу, добавим следующие теоретические моменты.

 

Уравнение поверхности в пространстве.

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

I. Определение. Плоскостьюназывается поверхность, все точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

где А, В, С – координаты вектора -вектор нормали к плоскости.

Возможны следующие частные случаи:

А = 0 – плоскость параллельна оси Ох

В = 0 – плоскость параллельна оси Оу

С = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

А = В = 0 – плоскость параллельна плоскости хОу

А = С = 0 – плоскость параллельна плоскости хОz

В = С = 0 – плоскость параллельна плоскости yOz

А = D = 0 – плоскость проходит через ось Ох

В = D = 0 – плоскость проходит через ось Оу

С = D = 0 – плоскость проходит через ось Oz

А = В = D = 0 – плоскость совпадает с плоскостью хОу

А = С = D = 0 – плоскость совпадает с плоскостью xOz

В = С = D = 0 – плоскость совпадает с плоскостью yOz

 

II. Пусть даны точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в декартовой системе координат.

Уравнение плоскости, проходящей через три точки:

.

III. Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор .

Уравнение плоскости, проходящей через данные точки М1 и М2, параллельно вектору .

 

IV. Пусть заданы два вектора и , коллинеарные плоскости, точка М1(x1, y1, z1), принадлежащая плоскости. Тогда уравнение плоскости:

 

V. Уравнение плоскости проходящей через точку М00, у0, z0), перпендикулярно вектору нормали (A, B, C) имеет вид:

A(x – x0) + B(y – y0) + C(z – z0) =0.

VI. Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D), получим уравнение плоскости в отрезках:

,

где . Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.

VII. Уравнение плоскости в векторной форме.

где

- радиус- вектор текущей точки М(х, у, z),

- единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.

a, b и g - углы, образованные этим вектором с осями х, у, z.

p – длина этого перпендикуляра.

В координатах это уравнение имеет вид:

xcosa + ycosb + zcosg - p = 0.

Расстояние от точки до плоскости.

Расстояние от произвольной точки М00, у0, z0) до плоскости Ах+Ву+Сz+D=0 равно:

 

Аналитическая геометрия.

Уравнение линии на плоскости.

Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение. Уравнением линииназывается соотношение y = f(x) между координатами точек, составляющих эту линию.

Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t.

Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

Уравнение прямой на плоскости.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

- C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

- А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

- В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

- В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

- А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой , заданной уравнением Ах + Ву + С = 0.

Поэтому уравнение прямой, проходящей через точку M0(x0, y0, z0) и перпендикулярно вектору , имеет вид

.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда уравнение прямой, проходящей через эти точки:

 

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

 

если х1 ¹ х2 и х = х1, еслих1 = х2.

Дробь = k называется угловым коэффициентом прямой.

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

 

 

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

Определение. Каждый ненулевой вектор (a1, a2), компоненты которого удовлетворяют условию Аa1 + Вa2 = 0 называется направляющим вектором прямой Ах + Ву + С = 0.

Поэтому уравнение прямой, проходящей через точку M0(x0, y0, z0) и перпендикулярно вектору , имеет вид

.

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или

,

где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем, то получим нормальное уравнение прямой:

xcosj + ysinj - p=0 –

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Угол между прямыми на плоскости.

Определение. Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как

.

Две прямые параллельны, если k1 = k2.

Две прямые перпендикулярны, если k1 = -1/k2.

Теорема. Прямые Ах + Ву + С = 0 и А1х + В1у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = lА, В1 = lВ. Если еще и С1 = lС, то прямые совпадают.

Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.

 

Уравнение прямой, проходящей через данную точку

перпендикулярно данной прямой.

Определение. Прямая, проходящая через точку М11, у1) и перпендикулярная к прямой у = kx + b представляется уравнением:

 

 

Расстояние от точки до прямой.

Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах + Ву + С =0 определяется как

.

 

Аналитическая геометрия в пространстве.

Уравнение линии в пространстве.

Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе координат удовлетворяют уравнению:F(x, y, z) = 0.

Это уравнение называется уравнением линии в пространстве.

Кроме того, линия в пространстве может быть определена и иначе. Ее можно рассматривать как линию пересечения двух поверхностей, каждая из которых задана каким- либо уравнением.

Пусть F(x, y, z) = 0 и Ф(x, y, z) = 0 – уравнения поверхностей, пересекающихся по линии L. Тогда пару уравнений

 

назовем уравнением линии в пространстве.

Уравнение прямой в пространстве по точке и направляющему вектору.

Возьмем произвольную точку М0(x0, y0, z0) и вектор (m, n, p), параллельный прямой. Вектор называется направляющим вектором прямой.

На прямой возьмем точку M(x, y, z).

 

z

 

M1

 

M0

 

 

 

0 y

 

x

Обозначим радиус- векторы этих точек как и , очевидно, что - = .

Т.к. векторы и коллинеарны, то верно соотношение = t, где t – некоторый параметр. Итого, можно записать: = + t.

Т.к. этому уравнению удовлетворяют координаты любой точки прямой, то полученное уравнение – параметрическое уравнение прямой.

Это векторное уравнение может быть представлено в координатной форме:

 

Преобразовав эту систему и приравняв значения параметра t, получаем канонические уравнения прямой в пространстве:

.

Определение. Направляющими косинусамипрямой называются направляющие косинусы вектора , которые могут быть вычислены по формулам:

; .

Числа m, n, p называются угловыми коэффициентами прямой.