Промышленные сети верхнего уровня

Сети верхнего уровня служат для передачи данных между контроллерами серверами и операторскими рабочими станциями. Иногда в состав таких сетей входят дополнительные узлы: центральный сервер архива, сервер промышленных приложений, инженерная станция и т.д. Но это уже опции.
Какие сети используются на верхнем уровне? В отличие от стандартов полевых шин, здесь особого разнообразия нет. Фактически, большинство сетей верхнего уровня, применяемых в современных АСУ ТП, базируется на стандарте Ethernet (IEEE 802.3) или на его более быстрых вариантах Fast Ethernet и Gigabit Ethernet. При этом, как правило, используется полный стек коммуникационных протоколов TCP/IP. В этом плане сети операторского уровня очень похожи на обычные ЛВС, применяемые в офисных приложениях. Использование единого сетевого стандарта позволяет упростить интеграцию АСУ ТП в общую сеть предприятия, что становится особенно ощутимым при реализации и развертывании систем верхнего уровня типа MES (Мanufacturing Еxecution System) .Однако у промышленных сетей верхнего уровня есть своя специфика, обусловленная условиями промышленного применения.

Типичными требованиями,предъявляемыми к таким сетям,являются:
1. Большая пропускная способность и скорость передачи данных.
Объем трафика напрямую зависит от многих факторов: количества архивируемых и визуализируемых технологических параметров, количества серверов и операторских станций, используемых прикладных приложений и т.д.
В отличие от полевых сетей жесткого требования детерминированности здесь нет: строго говоря, неважно, сколько времени займет передача сообщения от одного узла к другому – 100 мс или 700 мс (естественно, это не важно, пока находится в разумных пределах). Главное, чтобы сеть в целом могла справляться с общим объемом трафика за определенное время. Наиболее интенсивный трафик идет по участкам сети, соединяющим серверы и операторские станции (клиенты). Это связано с тем, что на операторской станции технологическая информация обновляется в среднем раз в секунду, причем передаваемых технологических параметров может быть несколько тысяч. Но и тут нет жестких временных ограничений: оператор не заметит, если информация будет обновляться, скажем, каждые полторы секунды вместо положенной одной. В то же время если контроллер (с циклом сканирования в 100 мс) столкнется с 500-милисекундной задержкой поступления новых данных от датчика, это может привести к некорректной отработке алгоритмов управления.
2. Отказоустойчивость. Достигается, как правило, путем резервирования коммуникационного оборудования и линий связи по схеме 2*N так, что в случае выхода из строя коммутатора или обрыва канала, система управления способна в кратчайшие сроки (не более 1-3 с) локализовать место отказа, выполнить автоматическую перестройку топологии и перенаправить трафик на резервные маршруты.

3. Соответствие сетевого оборудования промышленным условиям эксплуатации. Под этим подразумеваются такие немаловажные технические меры, как: защита сетевого оборудования от пыли и влаги; расширенный температурный диапазон эксплуатации; увеличенный цикл жизни; возможность удобного монтажа на DIN-рейку; низковольтное питание с возможностью резервирования; прочные и износостойкие разъемы и коннекторы. По функционалу промышленное сетевое оборудование практически не отличается от офисных аналогов, однако, ввиду специального исполнения, стоит несколько дороже.

Промышленная сеть Industrial Ethernet обеспечивает эффективную связь верхнего уровня и базируется на международных стандартах (IEEE 802.3/IEEE 802.3u).

На Западе коммуникационная технология построения единой информационной сети, объединяющей интеллектуальные контроллеры, датчики и исполнительные механизмы, определяется одним термином fieldbus (полевая шина, или промышленная сеть).

Fieldbus - это, во-первых, некий физический способ объединения устройств (например, RS485) и, во-вторых, программно-логический протокол их взаимодействия.

Корнем термина fieldbus является слово field - область, сфера, место приложения. Промышленные сети (fieldbuses) применяются на уровне устройств, обслуживающих реальный процесс производства и переработки материалов. Выход в системы представления (визуализации) данных, коммерческие и административные системы организуется, как упоминалось выше, через стандартные офисные сети типа Ethernet через протокол TCP/IP.

Переход на fieldbus-технологию обещает улучшение качества, снижение затрат и повышение эффективности конечной системы. Эти обещания основаны на том факте, что принимаемая или передаваемая информация кодируется в цифровом виде. Каждое устройство может выполнять функции управления, обслуживания и диагностики. В частности, оно может сообщать о возникающих ошибках и обеспечивать функции самонастройки. Это существенно увеличивает эффективность системы в целом и снижает затраты по ее сопровождению. Серьезный ценовой выигрыш получается за счет проводников и монтажных работ: аналоговая технология связи требует, чтобы каждое устройство имело собственный набор проводов и собственную точку соединения. Fieldbus устраняет эту необходимость, так как использует всего одну витую пару проводников для объединения всех активных (контроллеры) и пассивных (датчики) устройств.

В число узлов сети входят компьютеры, выполняющие функции NC и SCADA. Это могут быть обычные персональные компьютеры и специализированные программируемые логические контроллеры, называемые промышленными компьютерами. Специфика ПЛК - наличие нескольких аналоговых и цифровых портов, встроенный интерпретатор специализированного языка, детерминированные задержки при обработке сигналов, требующих незамедлительного реагирования. Однако ПЛК, в отличие от IBM PC, рассчитаны на решение ограниченного круга задач в силу специализированности программного обеспечения.

В целом промышленные компьютеры имеют следующие особенности: 1) работа в режиме реального времени (для промышленных персональных компьютеров разработаны такие ОС реального времени, как OS-9, QNX, VRTX и др.); 2) конструкция, приспособленная для работы ЭВМ в цеховых условиях (повышенные вибрации, электромагнитные помехи, запыленность, перепады температур, иногда взрывоопасность); 3) возможность встраивания дополнительных блоков управляющей, регистрирующей, сопрягающей аппаратуры, что помимо специальных конструкторских решений обеспечивается использованием стандартных шин и увеличением числа плат расширения; 4) автоматический перезапуск компьютера в случае "зависания" программы; 5) повышенные требования к надежности функционирования. В значительной мере специализация промышленных компьютеров определяется программным обеспечением. Конструктивно промышленный компьютер представляет собой корзину (крейт) с несколькими гнездами (слотами) для встраиваемых плат. Возможно использование мостов между крейтами. В качестве стандартных шин в настоящее время преимущественно используются шины VME-bus (Versabus Module Europe-bus) и PCI (Peripheral Component Interconnect).

Программная связь с аппаратурой нижнего уровня (датчиками, исполнительными устройствами) происходит через драйверы. Межпрограммные связи реализуются через интерфейсы, подобные OLE. Для упрощения создания систем разработан стандарт OPC (OLE for Process Control). Обычными для промышленных сетей являются предельные расстояния между узлами (датчиками, исполнительными устройствми и контроллерами) в сотни метров, размеры сообщений - до одного килобайта (в сжатой форме). Опрос датчиков периодический. Важное требование к промышленной сети - обеспечение работы в реальном масштабе времени, поэтому для АСУТП сети типа Ethernet не подходят, поскольку в них не гарантируется ограничение задержек сверху

Существуют три основных режима обмена данными, эффективность использования которых зависит от конкретной задачи.

● Режим «Ведущий ведомый». В этом простейшем режиме один из узлов ПС является ведущим устройст вом, которое последовательно опр шивает подчиненные узлы. В зависимости от содержания запроса в домый узел либо выполняет полученную команду, либо передает ведущему текущие данные с подключенных оконечных устройств. Типичным примером ЦПС, построенной на таком принципе, являются сети PROFIBUS. Как правило, роли ведущего и ведомого закрепляются жестко и не меняются в процессе функционирования сети.

Режим «Клиент сервер». Данный режим имеет много общего с предыдущим и используется в системах с гибким распределением функций. Узел клиент запрашивает данные, а узел сервер их предоставляет. При этом клиент может запрашивать несколько узлов, а сервер – иметь несколько клиентов. Также функции клиента и сервера могут совмещаться на одном узле. Примером может послужить ПС Foundation Fieldbus.

Режим «Подписка». В этом режиме узел, нуждающийся в регулярном поступлении какой либо информации, подписывается на её получение от другого узла, после чего получает регулярные рассылки данных без дополнительных запросов. Режим имеет два варианта: в первом случае данные передаются циклически с определенным интервалом вне зависимости от динамики информации; во втором случае данные передаются только в случае их изменения. Данный режим также используется в сетях Foundation Fieldbus.

Одним из основных критериев оценки систем АСУ ТП является надежность.

По надежности цифровой метод передачи данных намного превосходит аналоговый. Передача в цифровом виде малочувствительна к помехам и гарантирует доставку информации благодаря встроенным в протоколы ПС механизмам контрольных сумм, квитирования и повтора искаженных пакетов данных.

● Надежность функционирования систем АСУ ТП на базе ПС с интеллектуальными узлами значительно выше, чем в традиционных структурах.

● Важной проблемой является защита ПС от повреждения кабельной сети, особенно в том случае, если его топология имеет вид шины. Для критически важных технологических участков эта задача должна решаться дублированием линий связи или наличием нескольких альтернативных путей передачи информации.

Системы АСУ ТП редко делаются раз и навсегда; как правило, их состав и структура подвержены коррекции в си лу изменяющихся требований производства. Поэтому важными критериями оценки закладываемых в проект решений являются гибкость и модифицируемость комплекса. Сейчас практически все широко распространенные решения в этой сфере стандартизованы, что поз воляет разработчикам АСУ ТП выбирать оборудование из широкого спектра поставщиков, оптимизируя стоимость проекта и его технологическую структуру.

CAN, LON, PROFIBUS, Interbus-S, FIP, FF, DeviceNET, SDS, ASI, HART, ControlNet и несколько десятков протоколов еще - это сегодняшняя ситуация на рынке промышленных сетей. Каждая из них имеет свои особенности и области применения. На этом фоне отсутствует единый международный стандарт промышленной сети. Это приводит к тому, что каждая технология развивается самостоятельно в состоянии неизбежной конкуренции. Ясно, что со временем определится ведущая, например, пятерка технологий, вокруг которой будет сосредоточено основное внимание пользователей и бизнес независимых производителей.