Синхронные компенсаторы

Синхронные двигатели

В § 7.1 отмечалось, что все традиционные виды электрических машин обладают свойством обратимости. Это означает, что любой электрический генератор без каких-либо переделок или изменений может работать как двигатель. Т.е. преобразовывать электрическую энергию в механическую, а любой электрический двигатель может выполнять функцию генерирова­ния электрической энергии при подаче на его вал механической энергии.

Этот принцип основан на явлении индуктирования ЭДС в обмотках статоров машин переменного тока [в данном случае синхронных машин (СМ)] вне зависимости от режима, в котором они функционируют. При работе параллельно с сетью ток обмотки статора СМ определяется взаи­модействием ЭДС обмотки статора и напряжения сети, к которой присо­единена обмотка статора. Немного упрощая картину взаимодействия ЭДС машины и напряжения сети, можно утверждать, что поток активной мощности в генераторном режиме СМ идет от машины к сети, когда ЭДС больше напряжения. В двигательном режиме - наоборот, напряжение сети «перевешивает» ЭДС машины, определяя поток активной мощности от сети к машине.

Главной характеристикой синхронных двигателей (СД) является угло­вая характеристика, в точности повторяющая такую же характеристику синхронных генераторов (см. рис. 7.13). Отличие СД от синхронного генератора (СГ) состоит только в том, что электромагнитный момент Мэм, который был тормозящим у генератора, теперь является движущим, опре­деляющим направление вращения ротора. Функцию тормозящего момента выполняет механическая нагрузка установки. Т.е. необходимая механическая работа (подъем груза, прокат металла, вентиляция, привод

насосов, компрессоров и т.п.). Частота вращения ротора СД, как у генера­торов, работающих параллельно с сетью, определяется частотой напря­жения сети.

Мощность СД редко превышает 20—30 МВт (машины типа ТДС), однако СМ для гидроаккумулирующих станций (ГАЭС), используемые как в режиме обычных генераторов, так и насосов, т.е. в двигательном режиме, достигают существенно больших по мощности уровней (десят­ков и даже сотен мегаватт).

 

Важной проблемой в электрических системах является регулирование, так называемой, реактивной мощности. Для этого используются синхрон­ные генераторы, конденсаторные батареи, реакторы, синхронные и тири-сторные компенсаторы, а также ряд других устройств, обобщенно назы­ваемые источниками реактивной мощности (ИРМ).

В электрических системах ИРМ применяют в сетях напряжением ПО кВ и выше для решения следующих задач:

снижения потерь активной мощности и электроэнергии;

регулирования напряжения в узлах нагрузки;

увеличения пропускной способности электропередачи;

увеличения запасов статической устойчивости электропередачи и гене­раторов электростанций;

улучшения динамической устойчивости электропередачи;

ограничения перенапряжений;

симметрирования режима.

В системах электроснабжения промышленных предприятий ИРМ при­меняют в целях компенсации реактивной мощности, потребляемой мощ­ной резкопеременной нагрузкой, и симметрирования нагрузки.

Основными источниками реактивной мощности, необходимость кото­рых определяется индуктивным характером подавляющего числа совре­менных электротехнических устройств, являются синхронные генераторы электростанций. Особенность основных современных схем генерирова­ния, передачи и потребления электрической энергии состоит в том, что источники энергии весьма часто удалены от потребителей. Это приводит к необходимости передавать необходимую для потребителей и линий электропередачи реактивную энергию на большие расстояния, что и при­водит к большим энергетическим затратам и падениям напряжения. Функции источников реактивной энергии могут быть переданы в пункты потребления значительной реактивной энергии синхронным электриче­ским машинам, называемым синхронными компенсаторами.

Синхронные компенсаторы (СК), как правило, устанавливаются через понижающий трансформатор на подстанциях 110—500 кВ, где присоеди­няются к шинам низкого напряжения 6—20 кВ.

Синхронные компенсаторы — это вращающиеся синхронные машины, работающие в режиме холостого хода. Они обычно не имеют выходного конца вала, поэтому их легко выполнить закрытыми с воздушным или водородным охлаждением. В последнем случае они имеют герметически закрытое исполнение при избыточном давлении водорода 0,1—0,2 МПа. Частота вращения СК от 500 до 3000 1/мин, их реактивная мощность составляет 50—320 МВАР даже при воздушном охлаждении.

При потреблении реактивной мощности (индуктивный режим) в слу­чае необходимости регулирования напряжения в системе мощность СК обычно вдвое меньше мощности при генерировании реактивной мощно­сти (емкостный режим)