Волны в упругой среде
4.1. Примеры решения задач
Пример 1
Звуковые колебания, имеющие частоту ν = 500 Гц и амплитуду A = 0,25 мм, распространяются в воздухе. Длина волны λ = 70 см. Найти скорость υ распространения колебаний и максимальную скорость частиц воздуха.
Дано: ν = 500 Гц A = 0,25 мм = 2,5·10-4 м λ = 70 см = 0,7 м | Решение: 1). Скорость распространения колебаний (фазовая скорость) связана с длиной λ волны и частотой колебаний ν соотношением υ=ln Следовательно, фазовая скорость υ = 0,7·500 = 350 м/с. |
υ – ?
![]() |
2). Уравнение плоской волны имеет вид
,
где ξ = ξ(l, t) – смещение точки, находящейся на расстоянии x от источника колебаний, в момент времени t;
A – амплитуда колеблющихся точек;
k = – волновое число.
Скорость точек среды, в которой распространяется волна, можно найти, продифференцировав волновое уравнение по времени:
.
Если =1, то скорость частиц в воздухе будет максимальной и равной
= 2,5·10-4·2·π·500 = 0,785 м/с.
Ответ: υ = 350 м/с; = 0,785 м/с.
Пример 2*
Смещение от положения равновесия точки, отстоящей от источника колебаний на расстояние l1 = 4 см, в момент времени t1 = равно половине амплитуды. Найти длину λ бегущей волны.
Дано:
l1 = 4 см
t1 = ![]() ![]() | Решение: По условию, смещение точки, находящейся на расстоянии l1 от источника колебаний, в момент времени t1 равно
![]() ![]() |
λ – ? |
Приравнивая правые части обоих равенств, получаем, что
,
Следовательно , (1)
где – циклическая частота колебаний;
– волновое число.
Тогда с учетом того, что t1 = , выражение (1) приобретает следующий вид:
Отсюда находим, что и, следовательно, длина волны
λ = 12l1 = 12·4 = 48 см.
Ответ: λ = 48 см.
Пример 3*
Найти разность фаз колебаний двух точек, отстоящих от источника колебаний на расстоянии
м и
м. Период колебаний
с; скорость распространения
м/с.
Дано:
![]() ![]() ![]() ![]() |
![]() |
Решение: Смещение точки , отстоящей от источника колебаний на расстояние
в момент времени , определяется из уравнения волны
где () – фаза колебаний данной точки в данный момент времени.
Тогда фаза первой точки в момент времени :
, а фаза второй точки в этот же момент времени
.
Следовательно, разность фаз этих двух точек равна
.
.
рад, т.е. точки, колеблются в противофазе.
Ответ: рад.
Пример 4
Один конец упругого стержня соединен с источником гармонических колебаний, подчиняющихся закону , а другой его конец жестко закреплен. Учитывая, что отражение в месте закрепления стержня происходит от менее плотной среды, определите характер колебаний в любой точке стержня.
Дано:
![]() |
![]() |
Решение:
,
,
,
,
,
.
При - пучности стоячей волны (
).
При - узлы стоячей волны (
).
Пример 5.
На расстоянии l=4м от источника плоской волны частотой Гц перпендикулярно ее лучу расположена стена. Определить расстояния от источника волн до точек, в которых будут первые три узла и три пучности стоячей волны, возникшей в результате сложения бегущей и отраженной от стены волн. Скорость волны считать равной 440 м/c.
Дано:
l=4м
![]() ![]() |
![]() ![]() |
Решение: Ось
направим вдоль луча бегущей волны, а начало О координат совместим с точкой, находящейся на источнике MN плоской волны (см. рис).
С учетом этого уравнение бегущей волны запишется в виде
. (1)
Поскольку в точку с координатой x волна возвратится, пройдя дважды расстояние , и при отражении от стены, как среды более плотной, изменит фазу на
, то уравнение отраженной волны можно записать в виде
.
После тригонометрических преобразований получим
. (2)
Уравнение стоячей волны найдем, складывая уравнения (1) и (2):
.
Воспользовавшись формулой разности косинусов, получим
.
Так как выражение не зависит от времени, то, взятое по модулю, оно может рассматриваться как амплитуда стоячей волны:
. (3)
Зная выражение амплитуды (3) стоячей волны можно найти координаты узлов и пучностей.
Узлы возникают в тех точках, где . Это равенство выполняется для точек, координаты
которых удовлетворяют условию
. (4)
Учитывая, что (5)
выражение (4) перепишется в виде:
,
Откуда находим координаты узлов:
, n = 0,1,2,3…
Подставив сюда значения и
найдем координаты первых трех узлов:
;
;
.
Пучности возникают в тех точках, где амплитуда (3) стоячей волны максимальна:
Отсюда следует, что
(6)
С учетом (5) выражение (6) перепишется в виде
откуда находим координаты пучностей
, n = 0,1,2,3,…
Подставив сюда значения и
получаем координаты первых трех пучностей:
;
;
.
Изобразим на рисунке границы максимальных смещений точек среды в зависимости от их координат.
- координаты узлов стоячей волны;
- координаты пучностей стоячей волны.
Ответ: координаты узлов: ;
;
;
координаты пучностей: ;
;
.
4.2. Задачи для самостоятельного решения
1. От источника колебаний распространяется волна вдоль прямой линии. Амплитуда A колебаний равна 10 см. Найти смещение от положения равновесия точки, удавленной от источника на расстояние , в момент, когда от начала колебаний прошло время
.
(см)
2. Волна распространяется в упругой среде со скоростью . Наименьшее расстояние
между точками среды, фазы колебаний которых противоположны, равно 1м. Определить частоту колебаний.
()
3. Определить разность фаз колебаний источника волн, находящегося в упругой среде, и точки этой среды, отстоящей на расстоянии
м от источника. Частота колебаний
Гц, волны распространяются со скоростью
м/с.
4. Плоская звуковая волна имеет период T=3 с, амплитуду А=0,2 мм, и длину волны м. Для точек среды, удаленных от источника колебаний на расстояние
м, найти: 1) смещение от положения равновесия
в момент
мс; 2) скорость
и ускорение
для того же момента времени. Начальную фазу колебаний принять равной нулю.
(;
;
)
5. Плоская звуковая волна возбуждается источником колебаний частоты Гц. Амплитуда A колебаний источника равна 4 мм. Написать уравнение колебаний источника
, если в начальный момент времени смещение точек источника максимально. Найти смещение
точек среды, находящихся на расстоянии
см от источника, в момент
с. Скорость звуковой волны принять равной 300 м/c. Затуханием пренебречь.
(,
мкм)
6. Задано уравнение плоской волны см. Определить 1) частоту
колебаний; 2) фазовую скорость
и длину волны
; 3) максимальные значения скорости
и ускорения
колебаний частиц среды.
(Гц;
м;
м/c;
м/c;
)
7. Стоячая волна образуется при наложении бегущей звуковой волны и волны, отраженной от границы раздела сред, перпендикулярной направлению распространения волны. Найти положения (расстояния от границы раздела сред) узлов и пучностей стоячей волны, если отражение происходит от среды менее плотной. Скорость распространения звуковых колебаний равна 340м/с и частота кГц.
7,5; 12,5 см;…
5; 10 см,..)
8. Стоячая волна образуется при наложении бегущей звуковой волны и волны, отраженной от границы раздела сред, перпендикулярной направлению распространения волны. Найти положения узлов и пучностей стоячей волны, если отражение происходит от среды более плотной. Скорость распространения звуковых колебаний равна 340м/с и частота кГц.
7,5; 12,5 см,..
5; 10 см,..)
9. Определить длину бегущей волны, если в стоячей волне расстояние l между первой и седьмой пучностями равно 15см.
(см)
10. Определить длину l бегущей волны, если в стоячей волне расстояние между первым и четвертым узлом равно 15см.
(см)
11. Найти положение узлов и пучностей и начертить график стоячей волны, если отражение происходит от менее плотной среды. Длина бегущей волны см.
12; 20 см,..
8; 16 см,..)
12. Найти положение узлов и пучностей и начертить график стоячей волны, если отражение происходит от более плотной среды. Длина бегущей волны см.
(