Определение булевой функции
ТЕМА 4. БУЛЕВЫ ФУНКЦИИ
Определение 4.1. Булевой функцией f(x1, x2, ... , xn) называется произвольная функция n переменных, аргументы которой x1, x2, ... , xn и сама функция f принимают значения 0 или 1, т. е. xi {0, 1}, i = 1, 2, ... , n; f(x1, x2, ... , xn) {0, 1}.
Одной из важнейших интерпретаций теории булевых функций является теория переключательных функций. Первоначально математический аппарат теории булевых функций был применен для анализа и синтеза релейно-контактных схем с операциями последовательного и параллельного соединения контактов. Подробнее это приложение теории булевых функций будет рассмотрено в разделе 4.9.Любая булева функция может быть представлена таблицей, в левой части которой перечислены все наборы переменных (их 2n), а в правой части – значения функции. Пример такого задания представлен в таблице 4.1.
Таблица 4.1
x1 x2 x3 | f(x1, x2, x3) |
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 |
Для формирования столбца значений переменных удобен лексико-графический порядок, в соответствии с которым каждый последующий набор значений получается из предыдущего прибавлением 1 в двоичной системе счисления, например, 100 = 011+ 1.
Всего существует 22 различных булевых функций n переменных.
Функций одной переменной – 4. Из них выделим функцию “отрицание x”(обозначается Øx). Эта функция представлена в таблице 4.2.
Таблица 4.2
x | Øx |
Булевых функций двух переменных – 16 (22 при n = 2). Те из них, которые имеют специальные названия, представлены в таблице 4.3.
Таблица 4.3
x1 x2 | x1Vx2 | x1& x2 | x1 x2 | x1~x2 | x1 Å x2 | x1¯ x2 | x1ï x2 |
0 0 0 1 1 0 1 1 | 0 | 1 | 1 |
В таблице 4.3 представлены следующие функции двух переменных:
x1Vx2 – дизъюнкция;
x1& x2 – конъюнкция;
x1Éx2 – импликация;
x1~x2 – эквивалентность;
x1Å x2 – сложение по модулю 2;
x1¯x2 – стрелка Пирса;
x1ï x2 – штрих Шеффера.
Остальные функции специальных названий не имеют и могут быть выражены через перечисленные выше функции.