Електропровідність металів і напівпровідників
Відомо (розділ 3), що густина електричного струму в провідниках (металах, напівпровідниках, електролітах тощо) визначається зарядом носіїв, їх концентрацією n та середньою швидкістю напрямленого (дрейфового) руху , зумовленого електричним полем напруженістю . Якщо носіями струму є електрони, то густина струму
(7.98)
В слабких електричних полях, де виконується закон Ома, швидкість напрямленого руху лінійно залежить від напруженості електричного поля, тобто
, (7.99)
де – рухливість електронів.
Підставляючи (7.99) у (7.98), отримаємо
, (7.100)
тобто закон Ома в диференційній формі, де
(7.101)
– питома електропровідність електронного провідника (металу, напівпровідника n-типу).
Питома електропровідність власного напівпровідника
, (7.102)
де – рухливість дірок.
Рухливість носіїв визначається так званим часом релаксації t, який формально можна розглядати як проміжок часу між двома послідовними актами зіткнення (розсіяння) носіїв з недосконалостями кристалу. Основними недосконалостями (відхиленнями від ідеальності) є коливання кристалічної решітки (фонони) і домішки кристалу. В рамках вказаного формалізму середній час релаксації носіїв
, (7.103)
де – середня довжина вільного (між двома послідовними зіткненнями) пробігу носіїв, – середня швидкість теплового (хаотичного) руху носіїв.
Строга квантова теорія дає
. (7.104)
Підставляючи (7.104) у (7.101), отримаємо для питомої електропровідності
. (7.105)
Оскільки в металах концентрація носіїв (електронів у c-зоні) від температури не залежить, то залежність питомої електропровідності визначається лише відношенням . Виявляється, що, за винятком дуже низьких температур, . І тому , а питомий опір , у відповідності з відомим експериментальним законом . Відмітимо, що при оціночних розрахунках можна покладати .
Принципово інша ситуація в напівпровідниках, де концентрація носіїв експоненційно залежить від температури (7.95–7.97). Рухливість носіїв в напівпровідниках також залежить від температури, але за значно слабшим, степеневим законом
,
де a при різних температурах приймає значення від – 1,5 до + 1,5. Підставляючи (7.95–7.97) у (7.101; 7.102), отримаємо вирази для питомої електропровідності:
власного (n=p) напівпровідника,(7.106)
домішкового n-типу (7.107)
домішкового p-типу , (7.108)
де передекспоненційні множники можемо наближено вважати від температури незалежними. Формули (7.106 – 7.108) можна узагальнити у вигляді
, (7.109)
де – енергія активації провідності, яка у власному напівпровіднику дорівнює , а у домішкових напівпровідниках має зміст половини енергії іонізації донорів чи акцепторів. Отже, питома електропровідність напівпровідників експоненційно збільшується з ростом температури, чим останні принципово відрізняються від металів.
Температурна залежність питомого опору напівпровідникового кристалу, як випливає з (7.109),
(7.110)
або
В широкій області температур експериментальна залежність (рис. 7.32) має три ділянки: 1 – домішкової провідності; 2 – повної іонізації домішок (n = [Д] для кристалу n-типу); 3 – власної провідності.