Синапс нервной клетки

При оплодотворении восстанавливается диплоидный набор хромосом. Значение мейоза не ограничивается предотвращением удвоений хромосом в каждом следующем поколении. При конъюгации хромосом во время первого мейотического деления гомологичные хромосомы обмениваются отдельными своими участками.Это приводит к перекомбинации части отцовских и материнских генов в хромосоме и таким образом повышает наследственную изменчивость в следующих поколениях.

В тканевых клетках митоз может не завершаться плазматомией; эта приводит к образованию двуядерных клеток. Иногда в клетке умножений набора хромосом осуществляется без увеличения числа ядерэндомитоз.;

При эндомитозе не происходит реорганизации цитоплазмы, сохраняется ядерная оболочка и ядрышко; размеры ядра увеличиваются. Эндомитоз наблюдается

в различных тканевых клетках животных и растений. Большое распространение он имеет у простейших, где приводит, в частности, к образованию крупных макронуклеусов инфузорий, заключающих в себе большое число хромосомных наборов.

Ядра с увеличенным числом хромосомных наборов называются полиплоидными; имеющие четыре набора вместо двух называются тетраплоидными, восемь — октаплоидными и т. д. Полиплоидность может быть получена не только путем эндомитоза, но и в результате повреждения механизма митоза при ряде воздействий на делящиеся клетки (например, при отравлении колхицином, аценафтеном, трипафлавином и др.). Полиплоидность связана с увеличением размеров клеток - при полиплоидности всех тканевых клетокобычно увеличиваются и размеры организма.

В некоторых тканевых клетках (например, у насекомых) происходит умножение хромонем в каждой хромосоме без увеличения числа хромосом и без характерной для митоза реорганизации ядра и цитоплазмы — политения. При этом хромосомы становятся крупнее и по размеру могут превышать в сотни раз обычные хромосомы (например, во многих соматических клетках двукрылых). Политения также сопровождается увеличением размеров клетки. При политении и полиплоидии в ядрах соответственно возрастает количество ДНК. Эндомитоз и политения в специализированных или дифференцирующихся клетках приводят к увеличению ядерного материала без нарушения их специфических функций и структур.

В клетках различных нормальных (скелетные мышцы, фиброциты, эпителий мочевого пузыря и т. д.) и патологических (злокачественные опухоли) тканей можно наблюдать, деление ядер путемамитоза. Нередко амитозы наступают после повреждения тканей разными агентами. При амитозе ни в ядре, ни в цитоплазме не обнаруживаются какие-либо существенные перестройки. Амитоз обычно начинается с перешнуровывания ядрышек, затем перетяжкой или путем образования перегородки ядро разделяется на две половинки. Иногда ядро сразу делится на несколько частей (фрагментация). В некоторых случаях деление происходит неравномерно, и от ядра отпочковываются небольшие части кариоплазмы. Обычно амитоз не сопровождается плазматомией и приводит лишь к увеличению числа ядер в клетке. Вопросы полноценности амитоза как способа деления ядер, состояния хромосомного аппарата при амитозе и возможности смены амитоза митозом' до настоящего времени не решены.

Материнский и отцовский организмыодинаково влияют на наследственность потомков, несмотря на то, что в оплодотворенном яйце — зиготе цитоплазма почти полностью материнского происхождения. Это обстоятельство свидетельствует о том, что основным носителем наследственности служат хромосомы ядра, которые содержатся в яйцевой клетке и сперматозоиде в равном количестве (не считая половых хромосом). Наряду со многими другими фактами этот вывод подтверждается прямыми опытами, в которых зигота, содержащая цитоплазму яйца одного вида и ядро сперматозоида другого, развивалась в организм, обладавший только признаками отца (опыты на шелковичных червях Б.Л.Астаурова).

Имеются, однако, данные, свидетельствующие о том, что некоторые факторы наследственности находятся и в цитоплазме. На это указывают, в частности, те случаи, когда признак передается матерью, но не передается отцом. Явления цитоплазматической наследственности обнаружены в значительном количестве у высших и низших растений, в меньшем — у животных (например, пестролистность у некоторых декоративных растений, вязкость цитоплазмы, устойчивость к ядам, температурный оптимум и др. свойства у кипрея, чувствительность к CO2 у дрозофилы и т. д.). Факторы наследственности должны быть способны к самовоспроизведению.

В цитоплазмеживотных клеток среди микроскопически видимых структур к редупликации путем деления способны митохондрии, аппарат Гольджи и центриоли, у растительных клеток — митохондрии и пластиды. Однако не исключена также возможность образования этих структур в цитоплазме заново, что было неоднократно показано в отношении центриолей. Вопрос о том, какие компоненты цитоплазмы могут быть носителями факторов. наследственности, остается открытым; лишь в некоторых случаях эту роль с большой долей вероятности удается приписать хлоропластам.

Одной из важнейших, но не решенных проблем цитологии является выяснение того, каким путем хромосомы оказывают специфическое влияние на обмен веществ клетки и тем самым определяют их наследственно обусловленные свойства. Для решения этого вопроса и определения участия ядра в осуществлении клеточных функций большое значение имеют наблюдения над клетками, искусственно лишенными ядра, а также опыты по введению в клетку с удаленным ядром ядра, взятого от клетки другого вида (Хеммерлинг).

Рис.4. Межнейрональный химический синапс.

1. пресинаптический полюс; 2. синаптическая щель;3. простсинаптический полюс.

Синапс - (от греческого synapsis - соприкосновение, связь) - место контакта двух нейронов или нейрона и мышцы.

Синапс состоит их 2-х мембран, соприкасающихся друг с другом: одна из них принадлежит разветвлению аксона одного нейрона, 'а другая - дендриту другого нейрона (рис. 4.). При исследовании синапса под электронным микроскопом ясно видна граница контактирующих друг с другом нейронов. На этой границе чётко вырисовываются две мембраны - пресинаптическая и постсинаптическая, отделённые друг от друга синаптической щелью. В центральной нервной системе синаптическая щель является непосредственным продолжением межклеточного пространства, их содержимое сообщается друг с другом. Ширина синаптической щели - от 2 до 30 нм, диаметр синаптического контакта - от 0,1 до 10 мкм.Синаптическая щель - промежуток, разделяющий пресинаптическую мембрану аксона одной клетки и постсинаптическую мембрану тела или дендрита нейрона другой клетки или мышцы.

Пресинаптическая мембрана является продолжением поверхностной мембраны аксонального окончания, глиальные элементы не участвуют в образовании синапсов. Эта мембрана не сплошная, она имеет отверстия, через которые цитоплазма аксональных окончаний сообщается с синаптическим пространством. Постсинаптическая мембрана менее плотная, чем пресинаптическая, она не имеет отверстий. Толщина каждой из мембран синапса не превышает 5-6 нм. Несколько иначе построены органные синапсы, например в области нервно-мышечного соединения. На поверхности мышечного волокна имеется углубление со множеством ветвящихся и взаимодействующих между собой складок, в которых размещаются разветвления аксона. Здесь также различаются пресинаптическая (аксональная) мембрана и постсинаптическая (мышечная) мембрана. Обе мембраны состоят из нескольких слоев; толщина каждой — около 10 нм, пространство между мембранами заполнено сильно гидратированным гелем.

Синапсы бывают двух видов - возбудительные и тормозные, с их помощью происходит соответственно передача или блокада нервного импульса.

Основной функцией синапса является передача возбуждения с одной нервной клетки на другую либо с нейрона на эффекторный орган. По современным данным, в большинстве синапсов передача возбуждения осуществляется посредством медиатора, синтезируемого и накапливаемого в нервных окончаниях. Об этих функциях будет подробно рассказано при изучении физиологии ЦНС.