Основы принципа взаимозаменяемости.

.

2.1 Понятие о взаимозаменяемости и ее видах.

Взаимозаменяемостью называется возможность сборки независимо изготовленных деталей в узел без дополнительных операций обработки и пригонки. При этом должна обеспечиваться нормальная работа механизма.

При современном серийном производстве детали производят в одних цехах, а собирают машины, узлы и приборы в других. В процессе сборки применяют различные крепежные детали, изделия из неметаллических материалов, подшипники качения и другие изделия, изготовленные на разных специализированных предприятиях. Несмотря па это, сборка происходит без дополнительных подгоночных и доводочных операций, а собранные машины и их части удовлетворяют предъявляемым требованиям. Это возможно при условии взаимозаменяемости узлов и деталей.

 

Раньше взаимозаменяемость рассматривалась как принцип собираемости деталей и узлов. Сейчас взаимозаменяемость распространяется и на износостойкость, твердость, внутренние напряжения, т. е. на качественные показатели, определяющие надежность и долговечность работы машин, узлов и деталей.

Взаимозаменяемость подразделяется на полную и неполную, внешнюю и внутреннюю, функциональную и по геометрическим параметрам.

Наиболее широко применяют полную взаимозаменяемость, которая обеспечива­ет возможность беспригоночной сборки (или замены при ремонте) любых неза­висимо изготовленных с заданной точностью однотипных деталей в сборочные единицы, а последних — в изделия при соблюдении предъявляемых к ним (к сборочным единицам или изделиям) технических требований по всем пара­метрам качества. Выполнение требований к точности деталей и сборочных еди­ниц изделий является важнейшим исходным условием обеспечения взаимоза­меняемости. Кроме этого, для обеспечения взаимозаменяемости необходимо выполнять и другие условия: устанавливать оптимальные номинальные значе­ния параметров деталей и сборочных единиц, выполнять требования к материа­лу деталей, технологии их изготовления и контроля и т. д. Взаимозаменяемыми могут быть детали, сборочные единицы и изделия в целом. В первую очередь та­кими должны быть детали и сборочные единицы, от которых зависят надеж­ность и другие эксплуатационные показатели изделий. Это требование, естест­венно, распространяется и на запасные части. При полной взаимозаменяемости: упрощается процесс сборки — он сводится к простому соединению деталей рабочими преимущественно невысокой квалификации; появляется возможность точно нормировать процесс сборки во времени, устанавливать необходимый темп работы и применять поточный метод; создаются условия для автоматизации процессов изготовления и сборки изделий, а также широкой специализации и кооперирования заводов (при которых завод-поставщик изготовляет унифицированные изделия, сборочные единицы и детали ограниченной номенклатуры и поставляет их заводу, выпускающему основные изделий.

упрощается ремонт изделий, так как любая изношенная или поломанная де­таль или сборочная единица может быть заменена новой (запасной).

Иногда для удовлетворения эксплуатационных требований необходимо изготов­лять детали и сборочные единицы с малыми экономически неприемлемыми или технологически трудно выполнимыми допусками. В этих случаях для получения требуемой точности сборки применяют групповой подбор деталей (селективную сборку), компенсаторы, регулирование положения некоторых частей машин и приборов, пригонку и другие дополнительные технологические мероприятия при обязательном выполнении требований к качеству сборочных единиц и изде­лий. Такую взаимозаменяемость называют неполной (ограниченной). Ее можно осуществлять не по всем, а только по отдельным геометрическим или другм параметрам.

Внешняя взаимозаменяемость — это взаимозаменяемость покупных и коопери­руемых изделий (монтируемых в другие более сложные изделия) и сборочных единиц по эксплуатационным показателям, а также по размерам и форме присое­динительных поверхностей. Например, в электродвигателях внешнюю взаимоза­меняемость обеспечивают по частоте вращения вала и мощности, а также по раз­мерам присоединительных поверхностей; в подшипниках качения — по наружному диаметру наружного кольца и внутреннему диаметру внутреннего кольца.

Внутренняя взаимозаменяемость распространяется на детали, сборочные едини­цы и механизмы, входящие в изделие. Например, в подшипнике качения внут­реннюю групповую взаимозаменяемость имеют тела качения и кольца.

Функциональная взаимозаменяемость стандартных изделий — это свойство не­зависимо изготовляемых деталей занимать свое место в изделии без допол­нительной обработки. Функциональная взаимозаменяемость предполагает не только возможность нормальной сборки, но и нормальную работу изделия после установки в нем новой детали или другой составной части взамен вышедшей из строя. Функциональнымиявляются геометрические, электрические, механические и другие параметры, влияющие на эксплуатационные показатели машин и других изделий или служебные функции сборочных единиц. Например, зазор между поршнем и цилиндром (функциональный параметр) влияет на мощность двига­телей (эксплуатационный показатель).

Взаимозаменяемость по геометрическим параметрам — необходимое условие для соблюдения функциональной взаимозаменяемости, она является ее частным видом.

2.2 Основные определения взаимозаменяемости.

В России действуют Единая система допусков и посадок (ЕСДП) и Основные нормы взаимозаменяемости, которые базируются на стандартах и рекомендаци­ях ИСО. ЕСДП распространяется на допуски размеров гладких элементов дета­лей и на посадки, образуемые при соединении этих деталей. Основные нормы взаимозаменяемости включают системы допусков и посадок на резьбы, зубчатые передачи, конуса и др.

Размеры, предельные отклонения и допуски.

При конструировании определя­ются линейные и угловые размеры детали, характеризующие ее величину и фор­му. Они назначаются на основе результатов расчета деталей на прочность и же­сткость, а также исходя из обеспечения технологичности конструкции и других показателей в соответствии с функциональным назначением детали. На чертеже должны быть проставлены все размеры, необходимые для изготовления детали и ее контроля.

Размеры, непосредственно или косвенно влияющие на эксплуатационные пока­затели машины или служебные функции узлов и деталей, называются функцио­нальными. Они могут быть как у сопрягаемых (например, у вала и отверстия), так и у несопрягаемых поверхностей (например, размер пера лопатки турбины, размеры каналов жиклеров карбюраторов и т. п.).

Параметр— это независимая или взаимосвязанная величина, характеризующая какое-либо изделие или явление (процесс) в целом или их отдельные свойства. Параметры определяют техническую характеристику изделия или процесса пре­имущественно с точки зрения производительности, основных размеров, конст­рукции. 1

Размер— это числовое значение линейной величины (диаметра, длины и т. д.) в выбранных единицах измерения. Размеры подразделяют на номинальные, дей­ствительные и предельные.

Номинальный — это размер, относительно которого определяются предельные размеры и который служит также началом отсчета отклонений. Номинальный размер — это основной размер, полученный на основе кинематических, динами­ческих и прочностных расчетов или выбранный из конструктивных, технологи­ческих, эксплуатационных, эстетических и других соображений и указанный на чертеже.

Действительный— это размер, установленный измерением с допустимой по­грешностью.

Предельные — это два предельно допустимых размера, между которыми должен находиться или которым может быть равен действительный размер. Предельные размеры на предписанной длине должны быть истолкованы следующим обра­зом:

а) для отверстий — диаметр наибольшего правильного воображаемого цилинд­ра, который может быть вписан в отверстие так, чтобы плотно контактиро­вать с наиболее выступающими точками поверхности (размер сопрягаемой летали идеальной геометрической формы, прилегающей к отверстию без за­зора), не должен быть меньше, чем проходной предел размера. Дополнительно наибольший диаметр в любом месте отверстия не должен превышать не­проходного предела размера;

б) для валов — диаметр наименьшего правильного воображаемого цилиндра, ко­торый может быть описан вокруг вала так, чтобы плотно контактировать с наиболее выступающими точками поверхности (размер сопрягаемой детали идеальной геометрической формы, прилегающей к валу без зазора), не дол­жен быть больше, чем проходной предел размера. Дополнительно минималь­ный диаметр в любом месте вала не должен быть меньше, чем непроходной предел размера.

Наибольший предельный размер — это больший из двух предельных, наименьший— это меньший из двух предельных размеров (рис. 1). ГОСТ 25346-89 установ­лены связанные с предельными размерами новые термины — «проходной» и «непроходной» пределы.

Термин «проходной предел» применяют к тому из двух предельных размеров, ко­торый соответствует максимальному количеству материала, а именно верхнему пределу для вала, нижнему — для отверстия. В случае применения предельных калибров речь идет о предельном размере, проверяемом проходным калибром.

Термин «непроходной предел» применяют к тому из двух предельных размеров, который соответствует минимальному количеству материала, а именно нижнему пределу для вала, верхнему — для отверстия. В случае применения предельных калибров речь идет о предельном проверяемом непроходным калибром.

Отклонение— это алгебраическая разность между размером (действительным, предельным и т. д.) и соответствующим номинальным размером.

Действительное отклонение — это алгебраическая разность между действитель­ным и номинальным размерами.

Предельное отклонение— это алгебраическая разность между предельным и но­минальным размерами.

Классификацию отклонений по геометрическим параметрам целесообразно рас­смотреть на примере соединения вала и отверстия. Термин «вал» применяют для обозначения наружных (охватываемых) элементов деталей, термин «отвер­стие» — для обозначения внутренних (охватывающих) элементов деталей. Тер­мины «вал» и «отверстие» относятся не только к цилиндрическим деталям круг­лого сечения, но и к элементам деталей другой формы (например, ограниченным двумя параллельными плоскостями — шпоночное соединение). Предельные отклонения подразделяют на верхнее и нижнее. Верхнее— это ал­гебраическая разность между наибольшим предельным и номинальным размера­ми, нижнее отклонение — это алгебраическая разность между наименьшим пре­дельным и номинальным размерами. В ГОСТ 25346-89 приняты условные обозначения: верхнее отклонение отвер­стия —ES, вала — es, нижнее отклонение отверстия — EI, вала — ei. В таблицах стандартов верхнее и нижнее отклонения указаны в микрометрах (мкм), на чер­тежах — в миллиметрах (мм). Отклонения, равные нулю, не указываются.

Допуск — это разность между наибольшим и наименьшим предельными размерами или абсолютная величина алгебраической разности между верхним и нижним отклонениями (рис. 1.1):

Но ГОСТ 25346-89 введено понятие «допуск систе­мы» — это стандартный допуск (любой из допусков), устанавливаемый данной системой допусков и посадок. Нулевая линия — это линия, соответствующая номинальному размеру, от кото­рой откладываются отклонения размеров при графическом изображении допус­ков и посадок. При горизонтальном расположении нулевой линии положитель­ные отклонения откладываются вверх от нее, а отрицательные — вниз (рис.1).

Поле допуска — это поле, ограниченное верхним и нижним отклонениями. Поле допуска определяется величиной допуска и его положением относительно номи­нального размера. При графическом изображении поле допуска заключено меж­ду двумя линиями, соответствующими верхнему и нижнему отклонениям отно­сительно нулевой линии(рис.2.1).

 

Рис. 2.1. Поля допусков отверстия и вала при посадке с зазором (отклонения отверстия положительны, отклонения вала отрицательны)

Для упрощения допуски можно изображать графически в виде полей допусков (рис. 2). При этом ось изделия всегда располагают под схемой.

Соединения и посадки. Две или несколько подвижно или неподвижно соеди­няемых деталей называют сопрягаемыми.Поверхности, по которым происходит соединение деталей, называют сопрягаемыми. Остальные поверхности называют несопрягаемыми (свободными). В соответствии с этим различают размеры сопря­гаемых и несопрягаемых (свободных) поверхностей. В соединении деталей, вхо­дящих одна в другую, есть охватывающие и охватываемые поверхности.

Посадкойназывают характер соединения деталей, определяемый величиной по­лучающихся в нем зазоров или натягов. Посадка характеризует свободу относи­тельного перемещения соединяемых деталей или степень сопротивления их вза­имному смещению.

В зависимости от взаимного расположения полей допусков отверстия и вала по­садка может быть: с зазором, натягом или переходной, при которой возможно получение как зазора, так и натяга. Схемы полей допусков для разных посадок показаны на рис 1.2

 

Рис. 2.2. Схемы полей допусков посадок: в — с зазором; б — натягом; в — переходной

Зазор S — разность размеров отверстия и вала, если размер отверстия больше размера вала. Наибольший, наименьший и средний зазоры определяют по форму­лам:

Smax= Dmax-dmin ; Smin= Dmin-dmax ; Sm=

Натяг N — разность размеров валаа и отверстия до сборки, если размер вала больше размера отверстия. Наибольший, наименьший и средний натяги определя­ют по формулам:

Nmax=dmax –Dmin ; Nmin=dmin-Dmax ; Nm=(Nmax+Nmin)/2

Посадка с зазором — посадка, при которой обеспечивается зазор в соединении (поле допуска отверстия расположено над полем допуска вала).

 

В переходных посадках допуск посадки –сумма наибольшего натяга и наибольшего зазора, взятых по абсолютному значению,TSN=Smax+Nmax.

Для всех типов посадок допуск посадок численно равен сумме допусков отверстия и вала, то есть TS(TN)=TD+Td.