Основные операции с матрицами 3 страница
1.ЭС для решения задач применяет высококачественные опыт и знания;
2.Знания в ЭС постоянно накапливаются и обновляются;
3.ЭС обладает прогностическими возможностями;
4.ЭС могут быть использованы для обучения руководящих работников и специалистов.
В процессе проектирования и функционирования ЭС можно выделить следующих участников:
1.Разработчик инструментальных средств проектирования ЭС;
2.Инструментальные средства (ИС) построения ЭС;
3.Сама ЭС;
4.Эксперт;
5.Инженер знаний или администратор БЗ;
6.Пользователь.
Инженер знаний – это человек, имеющий навыки в разработке систем ИИ и знающий как надо строить ЭС. Он опрашивает эксперта и организует знания в БЗ.
К инструментальным средствам (ИС) проектирования относят язык программирования ЭС и поддерживающие средства, через которые пользователь взаимодействует с ЭС.
Характеристика и назначение ЭС.
Наибольший прогресс среди компьютерных информационных систем отмечен в области разработки экспертных систем, основанных на использовании искусственного интеллекта. Экспертные системы дают возможность менеджеру или специалисту получать консультации экспертов по любым проблемам, о которых этими системами накоплены знания.
Под искусственным интеллектом обычно понимают способности компьютерных систем к таким действиям, которые назывались бы интеллектуальными, если бы исходили от человека. Чаще всего здесь имеются в виду способности, связанные с человеческим мышлением. Работы в области искусственного интеллекта не ограничиваются экспертными системами. Они также включают в себя создание роботов, систем, моделирующих нервную систему человека, его слух, зрение, обоняние, способность к обучению. Решение специальных задач требует специальных знаний. Однако не каждая компания может себе позволить держать в своем штате экспертов по всем связанным с ее работой проблемам или даже приглашать их каждый раз, когда проблема возникла. Главная идея использования технологии экспертных систем заключается в том, чтобы получить от эксперта его знания и, загрузив их в память компьютера, использовать всякий раз, когда в этом возникнет необходимость. Являясь одним из основных приложений искусственного интеллекта, экспертные системы представляют собой компьютерные программы, трансформирующие опыт экспертов в какой-либо области знаний в форму эвристических правил (эвристик). Эвристики не гарантируют получения оптимального результата с такой же уверенностью, как обычные алгоритмы, используемые для решения задач в рамках технологии поддержки принятия решений. Однако часто они дают в достаточной степени приемлемые решения для их практического использования. Все это делает возможным использовать технологию экспертных систем в качестве советующих систем.
Сходство информационных технологий, используемых в экспертных системах и системах поддержки принятия решений, состоит в том, что обе они обеспечивают высокий уровень поддержки принятия решений. Однако имеются три существенных различия. Первое связано с тем, что решение проблемы в рамках систем поддержки принятия решений отражает уровень ее понимания пользователем и его возможности получить и осмыслить решение. Технология экспертных систем, наоборот, предлагает пользователю принять решение, превосходящее его возможности. Второе отличие указанных технологий выражается в способности экспертных систем пояснять свои рассуждения в процессе получения решения. Очень часто эти пояснения оказываются более важными для пользователя, чем само решение. Третье отличие связано с использованием нового компонента информационной технологии - знаний.
Рассмотрим компетентность ЭС, сравнивая систему человеческого интеллекта и систему ИИ.
Система человеческого интеллекта | Система ИИ |
Недостатки. 1. Непрочная. 2. Труднопередаваемая. 3. Труднодокументируемая. 4. Непредсказуемая. 5. Дорогая. | Преимущества. 1. Постоянная. 2. Легкопередаваемая. 3. Легкодокументируемая. 4. Устойчивая. 5. Приемлемая. |
Преимущества. 1. Творческая. 2. Приспосабливающаяся. 3. Использует чувственное восприятие. 4. Разносторонняя. 5. Использует широкодоступные знания. | Недостатки. 1. Искусственно запрограммированная. 2. Нуждается в подсказке. 3. Использует символьное восприятие. 4. Узконаправленная. 5. Использует специальные знания. |
Анализируя преимущества и недостатки этих систем, можно сделать основной вывод о необходимости человека-эксперта, т.к. во многих областях он превосходит ИИ, например, по творчеству, изобретательности, способности передавать информацию и вообще по здравому смыслу.
Отличие ЭС от обычных программ обработки данных:
1.традиционные компьютерные программы – детерминированы при решении любой поставленной задачи они используют одну и ту же последовательность операций; ЭС строит собственное дерево решений для достижения каждой новой цели.
2.ЭС обрабатывает произвольные символьные выражения (например, концептуальные, временные и пространственные отношения). Если цель обычной программы – расчет числовых значений, накопление констант и извлечение данных из памяти, то цель ЭС – состоит в выдаче рекомендаций, основанных на предсказываемом поведении наблюдаемых объектов и течении событий.
3.Если традиционная программа следует определенным математическим правилам, то работа ЭС строится на обработке символьных выражений, основанной на эвристических рассуждениях.
ЭС имитирует рассуждения человека, выдавая предполагаемые решения определенной проблемы, а затем выделяя наиболее подходящие из них. Это позволяет ей с самого начала отбросить бесполезные решения. Более того, она использует составную структуру независимо от приобретенных субъективных знаний, применяя разработанную человеком систему проведения экспертизы к решению жизненных проблем. Благодаря системному анализу проблемы с различных точек зрения, она выдает не просто подходящее, а наилучшее решение. ЭС всецело зависят от человеческой экспертизы.
Модели представления знаний.
Можно различить два типа представления знаний:
1. логические
2. эвристические
В основе логических моделей лежит понятие формальной теории. В логических моделях отношения, существующие между отдельными единицами знаний (фактами) выражаются с помощью синтаксических знаний формальной теории (например, исчисление предикатов).
В отличие от логических моделей эвристические модели имеют разнообразный набор средств, передающих специфические особенности той или иной проблемной области. Эвристические модели превосходят логические модели и по возможностям или способности адекватно отобразить, т.е. представить проблемную область и по эффективности используемого механизма вывода. Эвристические модели бывают:
1. сетевые
2. фреймовые
3. продукционные
Рассмотрим первый тип представления знаний.