Фотосинтез 6 страница
2) эта молекула восстанавливается и теряет заряд, получив два «успокоившихся» (но не до исходного состояния – их энергия еще не до конца израсходована!) электрона, изначально поступивших от фотосистемы 2. В этом случае необходимости в фотолизе нет и его не происходит;
3) Р430 отдает электроны другому железосодержащему белку, который называется ферродоксин;
4) получив электроны, этот белок восстанавливает кофермент НАДФ+ до НАДФ-Н. Данный кофермент представляет собой фосфорилированный НАД. Процесс происходит на внешней мембране тилакоида. Для него необходим протон, который берется из внутреннего пространства хлоропласта, внешнему по отношению к тилакоиду. Тем самым протонный градиент только усиливается.
Последний этап вам ничего не напоминает? Да, он напоминает то, как НАД-Н окислялся до НАД+ и отдавал электроны по цепи переноса электронов. Только тут все происходит в обратном порядке. Там НАД-Н передавал энергию электрону, который ее терял, проходя по цепи переноса электронов. А здесь, наоборот, электрон, возбужденный энергией солнечного света, накопленной двумя последовательно сопряженными фотосистемами, передает ее НАДФ+, восстанавливая его до НАДФ-Н.
Действительно, вся световая фаза фотосинтеза похожа на окислительное фосфорилирование в митохондриях тем, что в ходе него по сходной цепи белков передаются электроны, в результате чего в некоем ограниченном мембраной пространстве – в данном случае внутреннем пространстве тилакоида – создается избыточная концентрация протонов, а на мембране – разность потенциалов. Возникающая потенциальная энергия электростатических сил используется для синтеза АТФ за счет движения протонов по градиенту, осуществляемого АТФ-синтетазой. Отличие от окислительного фосфорилирования состоит в том, что если там для возбуждения электронов использовалась восстановленная молекула НАД-Н, то здесь для этого используется свет, а НАДФ+, наоборот, восстанавливается и используется в темновой стадии фотосинтеза (а может быть далее использован и в тех же митохондриях). В целом получается, что протоны образуются во внутреннем пространстве тилакоида при фотолизе воды, закачиваются туда же в ходе работы фотосистемы 2 и черпаются из внешнего пространства тилакоида для восстановления НАДФ+ до НАДФ-Н, через посредство которого водород поступает в синтезируемые в ходе фотосинтеза углеводы.
Однако фотосистема 1 может работать и автономно. При этом используется обходной путь переноса электронов от возбужденного реакционного центра – а именно та же цепь переноса электронов, которая ведет из фотосистемы 2. Электроны проходят по ней, вызывая сопряженный транспорт протонов из внешней среды тилакоида во внутреннюю, чем усиливается протонный градиент, и возвращаются обратно к реакционному центру фотосистемы 1 – Р700. Таким образом, здесь свет словно крутит колесо протонного насоса, не окисляя воды и не восстанавливая НАДФ. Это называется циклическим фотофосфорилированием (рис. 6.5). Оно может идти параллельно с нециклическим. Кроме того, оно используется некоторыми фотосинтетическими бактериями, которые в процессе фотосинтеза не выделяют кислорода.
Приблизительный результат световой фазы фотосинтеза при нециклическом фотофосфорилировании можно записать в виде такой реакции:
2НАДФ+ 2АДФ + 2Ф- + 2H2O + 4 hv = 2НАДФ-Н + 2АТФ + O2.
Здесь hv – условное обозначение энергии одного фотона, Ф – условное обозначение остатка фосфорной кислоты из раствора. Приблизительный он потому, что, как и при окислительном фосфорилировании, количество АТФ, синтезируемое АТФ-синтетазой, не связано жесткой зависимостью от количества электронов, пропущенных по цепочке белков в фотосистеме II.
Наш приблизительный гешефт в результате световой фазы фотосинтеза, полная схема которой приведена на рис. 6.6, – одна АТФ и один восстановленный кофермент (который, как мы помним, при дыхании «стоит» 2,5 АТФ) на два фотона, т. е. почти две АТФ на один квант энергии, позаимствованной у одного пошлощенного фотона. Неплохо!
Итак, мы рассмотрели, откуда в ходе фотосинтеза берется энергия (т. е. АТФ). Осталось рассмотреть, как с использованием этой энергии делается органика. Один из способов универсален и используется всеми автотрофами - организмами, которые способны самостоятельно производить органику из неорганики: растениями, сине-зелеными водорослям, фотосинтетическими и хемосинтетическими бактериями. Он называется циклом Кальвина (рис. 6.7). Это еще один замкнутый цикл взаимопревращения органических веществ одно в другое под действием специальных ферментов, подобный циклу Кребса. И кстати, еще одна Нобелевская премия, 1961 года – открывшему его Мелвину Кальвину.
Цикл начинается с сахара, имеющего цепочку из пяти атомов углерода и несущего две фосфатные группы – рибулозо-1,5-бифосфат (и им же кончается). Процесс начинается, когда специальный фермент – рибулозобифосфаткарбоксилаза – присоединяет к нему молекулу СО2 (рис. 6.8). Образующаяся на короткое время шестиуглеродная молекула немедленно распадается на две молекулы глицерат-3-фосфата (он же 3-фосфоглицерат, с этим веществом мы уже встречались в гликолизе). Каждая из них содержит три атома углерода (поэтому цикл Кальвина называется также C3-путь фиксации углекислого газа).
Фактически фиксацию угелкислого газа в органике осуществляет именно этот фермент – рибулозобифосфаткарбоксилаза. Это на удивление медленный фермент – он карбоксилирует всего три молекулы рибулозо-1,5-бифосфата в секунду. Для фермента это очень мало! Поэтому самого данного фермента требуется много. Он фиксирован на поверхности тилакоидных мембран и составляет около 50 % от всех белков хлоропласта. Про него известно, что это самый распространенный белок в мире (подумайте почему).
Глицерат-3-фосфат с затратой одной молекулы АТФ фосфорилируется до дифосфоглицерата. Тот, в свою очередь, дефосфорилируется до глицеральдегид-3-фосфата, причем в ходе этой реакции одна молекула восстановленного НАДФ-Н окисляется до НАДФ+. Снова затраты энергии!
Получившееся соединение – глицеральдегид-3-фосфат – наш старый знакомый. Оно образуется в ходе расщепления глюкозы в процессе гликолиза, а именно при расщеплении фруктозо-1,6-бифосфата. Из него же в ходе ферментативных реакций, идущих без затраты энергии, можно получить глюкозу. Некоторые из реакций гликолиза необратимы (а именно те, в ходе которых дефосфорилируется АТФ), поэтому задействуются другие реакции и другие посредники.
Казалось бы, вот и весь фотосинтез. Но для того чтобы он продолжался, нам нужно каким-то образом регенерировать рибулозо-1,5-бифосфат – основной субстрат фиксирующего углекислый газ фермента. Поэтому на каждые 12 молекул образовавшегося глицеральдегид-3-фосфата только две идут на синтез глюкозы, а 10 направляются на восстановление шести молекул рибулозо-1,5-бифосфата. В этом процессе участвует 12 х 3 = 6 х 5 = 30 атомов углерода, которые перегруппируются из 10 трехуглеродных молекул в 6 пятиуглеродных. При этом на входе мы имеем 10 фосфатных групп (по одной на каждую молекулу глицеральдегид-3-фосфата), а на выходе должны иметь их 12. Однако на 6 молекул глицерат-3-фосфата дополнительно тратится не 2, а 6 молекул АТФ.
Если вычесть регенерирующие в ходе цикла вещества (которые дополнительно не синтезируются и не тратятся), то суммарное уравнение фиксации углекислоты получается таким:
6CO2 + 12НАДФ-Н +18 АТФ = 1 глюкоза + 12НАДФ+ + 18АДФ + 18Ф-+ 6H2O
(здесь Ф – это свободная фосфорная группа).
Мы получаем затраты 12 восстановленных коферментов и 18 АТФ на одну молекулу глюкозы. Если мы вспомним «цену» восстановленного кофермента в фирме «Цепь переноса электронов» в 2,5 молекулы АТФ, то получение одной молекулы глюкозы – единой межклеточной валюты – нам обходится, в единой клеточной валюте, в 48 АТФ. При ее расщеплении мы получали всего около 30 АТФ. Кажется, разница в курсе покупки и продажи называется «маржа». В данном случае она весьма немаленькая! Около 1/3 энергии теряется за счет КПД биохимических процессов. (В технике это было бы прямо-таки огромное значение КПД.)
Как мы могли заметить, фотосинтез вообще немного напоминает клеточное дыхание, вывернутое наизнанку. Там в ходе замкнутого в цикл взаимопревращения небольших органических веществ некоторые из них расходовались с выделением углекислого газа и восстанавливались коферменты, которые потом окислялись, отдавая электроны в цепь переноса электронов, откуда они в конечном счете поступали к молекуляному кислороду с образованием воды. Здесь процесс начинается с отнятия электронов у воды с образованием молекулярного кислорода, оттуда они (получив энергию от света) поступают в цепь переноса электронов и в конечном счете идут на восстановление коферментов. Восстановленные коферменты и углекислый газ же вступают в циклическое взаимопревращение органических веществ, в которой они синтезируются с затратой АТФ. Даже участки внешнего по отношению к органелле пространства оказались вывернутыми наизнанку и стали внутренним пространством тилакоида.
Заметим, что рассмотренного нами самого ходового варианта фотосинтеза есть один подводный камень. Рибулозобифосфаткарбоксилаза устроена так, что способна превращать рибулозо‑1,5‑бифосфат не только в желательные нам (т. е. растениям) две молекулы глицерат-3-фосфата, но и осуществлять прямо противоположную вещь – окислять ее при помощи кислорода до одной молекулы глицерат-3-фосфата, молекулы фосфогликолевой кислоты и молекулы углекислого газа (рис. 6.9). Фосфогликолевая кислота затем превращается в гликолевую кислоту и окисляется с помощью кислорода до еще двух молекул углекислого газа (это происходит в специальных органеллах клетки – пироксисомах, которые для этой цели тесно прилегают к пластидам). Вместо фиксации углекислоты в органической молекуле мы, наоборот, производим ее из органической молекулы. Этот процесс, поскольку он состоит в потреблении кислорода с высвобождением углекислого газа, называется фотодыханием, но в отличие от настоящего дыхания при этом не запасается никакой полезной энергии. Желательный процесс – н фиксация углекислого газа – преимущественно катализируется рибулозобифосфаткарбоксилазой при высоких концентрациях углекислого газа и низких – кислорода, а нежелательный – отщепление углекислого газа – наоборот, при низких концентрациях углекислого газа и высоких – кислорода, но именно эти условия и преобладают в атмосфере и клетках мезофилла – растительной ткани, в которой происходит фотосинтез.
В результате за счет фотодыхания теряется до половины только что фиксированного углерода. Чтобы обойти это препятствие, многими неродственными растениями был выработан обходной путь фиксации СО2. Он называется С4-путь. При нем углекислый газ фиксируется дважды – сначала на молекуле фосфоенолпирувата с образованием яблочной кислоты, или малата (у других растений – аспарагиновой кислоты), которая имеет 4 атома углерода (рис. 6.10). Этот процесс катализируется ферментом фосфоенолпируваткарбоксилазой, который не фиксирован на мембране, а растворен в цитоплазме клеток мезофила. Кроме того, он использует не молекулу СО2 как таковую, а ее гидратированную форму - ион угольной кислоты СО3-, находящийся в равновесии с СО2 при его растворении воде. Затем яблочная кислота мигрирует в другие клетки (обкладки сосудистых пучков), где от нее молекула углекислого газа снова отщепляется, и тут же, как ни в чем не бывало, снова фиксируется обычным способом, то есть рибулозобифосфаткарбоксилазой, и вступает в цикл Кальвина. Образующийся при этом пируват возвращается в клетки мезофила, где фосфорилируется с затратой АТФ и преобразуется в фосфоенолпируват, который тем самым регенерирует - и все повторяется по циклу. Весь фокус в том, что в клетках обкладки, куда не проникает так много кислорода, создется повышенная концентрация углекислого газа, чтобы рибулозобифосфаткарбоксилаза катализировала нужную реакцию. Заметим, что, задействовав С4-путь мы вынуждены тратить дополнительную молекулу АТФ для того, чтобы фосфорилировать пируват. Обращую ваше внимание на то, что пируват и яблочная кислота уже встречались нам в цикле Кребса, т. е. для «спасения» темновой стадии фотосинтеза от фотодыхания была задействована какая-то часть этого старого доброго цикла. Типичный пример того, как обстоят дела в биохимии.
Фактически С4-путь есть всего лишь надстройка над С3-путем для обеспечения его эффективности с использованием пространственной неоднородности условий. С3-путь сложился на заре существования жизни, когда в среде еще не было свободного кислорода, и оказался настолько базовой технологией в деле производства органики, что ни одно живое существо не изобрело с тех пор полностью альтернативной технологии. Надо сказать, что С4-путь эффективен при высоких температурах, но неэффективен при низких. Поэтому доля растений, которые им пользуются, повышается к югу.
Есть еще и так называемый «путь толстянковых» – он реализован в семействе толстянковых и кактусовых. Это действительно очень толстые растения, которые растут там, где жарко и мало воды. Экономя воду, в течение жаркого дня они закрывают свои устьица (это отверстия, по которому в листья проникают газы) и поэтому не могут поглощать СО2. Фиксация СО2 у них происходит только ночью, в ходе которой в больших количествах запасается яблочная кислота. Днем, при закрытых устьицах, она декарбоксилируется, и регенерировавший СО2 вступает в цикл Кальвина (хоть он и относится к темновой фазе фотосинтеза). Так что эти растения тоже используют обходной С4-путь, фиксируя углекислый газ дважды, но у них его первичная фиксация разделена с циклом Кальвина не в пространстве (в разных клетках), как в предыдущем варианте, а во времени.
Мы преднамеренно рассматриваем эти тонкости с тем чтобы отметить взаимосвязь биохимии с экологией – наукой о взаимодействиях организмов с внешней средой и друг с другом.
Таким образом, темновая стадия фотосинтеза, т. е. именно синтез органики, существует в нескольких вариантах. Световая же фаза организована одинаково у всех зеленых растений и у цианобактерий (сине-зеленые водоросли). Однако у другого типа фотосинтезирующих бактерий, или фототрофных бактерий, не являющихся цианобактериями, – пурпурных и зеленых бактерий, реализованы и другие типы световой стадии фотосинтеза. Эти два типа фототрофных бактерий различаются структурой своих хлорофиллов и их набором. Причем пурпурный (или коричневый, желтый) цвет пурпурных бактерий обусловлен, как и у высших растений, каротиноидами. Самое интересное, что хлорофилл пурпурных бактерий способен поглощать фотоны и осуществлять фотосинтез в невидимой инфракрасной части спектра. Это очень важно на глубинах, в которые видимый свет не проникает. Внутреннее пространство клеток фототрофных бактерий заполнено фотосинтезирующими мембранными структурами, в некоторых случаях напоминающими тилакоиды.
Общее уравнение фотосинтеза у фототрофных бактерий остается почти тем же самым, что и у зеленых растений:
СО2 + Н2Х = (СН2О) + 2Х.
Только кислород заменен на Х, в данном случае H2X – это не вода, а любое вещество, способное окисляться с передачей электрона в фотосистему и одновременно отдавать протон. Таким веществом может выступать сероводород, тиосульфат, молекулярный водород (в этом случае Х = 0) и органические соединения.
У зеленых и пурпурных бактерий существуют фотосистемы только одного типа. Они могут осуществлять как циклическое фотофосфорилирование, при котором не нужен экзогенный донор электронов и водорода, так и нециклическое, при котором такой донор необходим. Зачем же растениям и цианобактериям потребовалось сопряженная работа двух фотосистем?. Дело в том, что для синтеза органики в цикле Кальвина необходима не только энергия, которая может поступать в виде АТФ, но и восстановленные коферменты НАДФ в качестве донора не только энергии, но и водорода. Для того, чтобы перевести электрон в состояние с настолько высокой энергией, которого будет достаточно для восстановления молекулы НАДФ+ до НАДФ-Н, необходимо последовательное использование двух фотосистем. Энергии двух фотонов также оказалось достаточно для того, чтобы отнять электроны от атома кислорода в составе воды.
Примечательно, что в сопряженной паре двух фотосистем, которую впервые изобрели цианобактерии (сине-зеленые водоросли), фотосистема 1 происходит от фотосистемы зеленых бактерий, а фотосистема 2 – от фотосистемы пурпурных бактерий. Объединив два этих готовых механизма, цианобактерии оказались способны к окислительному фотолизу воды и восстановлению НАДФ+. Бактерии легко обмениваются генетическим материалом, и подобное объединение двух неродственных эволюционных линий для них не является чем-то исключительным. Растения унаследовали спаренную фотосистему от сине-зеленых водорослей. Каким образом – мы увидим это в лекции 8.
Самый распространенный у фототрофных бактерий вариант фотосинтеза – это когда вместо воды используется соединение водорода с элементом из той же группы кислорода – сера. Фототрофные серные бактерии, у которых реализован такой вариант, поглощают сероводород, а выделяют серу.
Серными бактериями является часть пурпурных и почти все зеленые бактерии. Где же такие бактерии должны жить? Следует полагать, что в областях активного вулканизма. Вулканы выделяют много серы, преимущественно в ее соединении с кислородом (сернистый газ SO3) и водородом (сероводород H2S). Да, в кратере активного вулкана особо не поживешь. Однако поблизости от него, а также у подножия потухших вулканов всегда есть места истечения вулканических газов – фумаролы. Обычно они располагаются в трещинах изверженных пород, которым соответствуют углубления поверхности, где соответственно скапливается вода. Эта вода насыщена сероводородом, что и являются благоприятной средой для фотосинтетических серных бактерий.
В какой форме выделяется сера? Все серные фототрофные бактерии окисляют восстановленные соединения серы до минеральной серы – твердого вещества. У одних бактерий сера накапливается внутри клеток в виде твердых частиц. По мере гибели бактерий они выходят в окружающую среду. Другие способны выделять серу сразу в окружающую среду. Многие зеленые и пурпурные серные бактерии способны окислять серу дальше, вплоть до сульфатов, но в качестве субстрата для световой стадии фотосинтеза используется именно сероводород и некоторые другие соединения восстановленной серы с водородом.
Однако фототрофные серобактерии встречаются не только в фумаролах – они могут появляться везде, где только ни встречается сероводород. А он часто образуется при анаэробном разложении органики другими бактериями. В частности, они развиваются, иногда в больших количествах, в придонном слое прудов, озер и морей. Большинство фототрофных бактерий – строгие (облигатные) анаэробы. Однако есть среди них и факультативные аэробы, способные жить присутствии кислорода.
В приведенном уравнении Х может и равняться нулю. Такие фотосинтетические бактерии потребляют чистый молекулярный водород. Реакционный центр фотосистемы отнимает два электрона у атома водорода и превращает его в два протона. Бактерии, использующие в качестве восстановителя водород, менее распространены, чем серные бактерии.
Большинство фототрофных бактерий способны к фотоокислению органических веществ (здесь Х – это органический радикал), но это уже вряд ли можно назвать фотосинтезом, так как органические вещества тут больше тратятся, чем образуются.
Не надо забывать про существование циклического фотофосфорилирования – процесса, при котором не требуются молекулы-доноры ни протонов, ни электронов. Можно предположить, что это была исторически первая действующая схема световой стадии фотосинтеза, так как она самая простая, включающая всего одну фотосистему и не требующая дополнительных восстановителей. В ходе циклического фотофосфорилирования образуется не очень много АТФ, а в классическом его случае НАДФ+ не восстанавливается вовсе (но у некоторых фототрофных бактерий может и восстанавливаться). Наверняка, будучи «изобретено», циклическое фосфорилирование служило только лишь некоторым энергетическим подспорьем своим носителям. Но поскольку весь механизм работает на создании разницы концентрации протонов внутри и вне некоего мембранного пространства, то оказалось удобно усилить этот градиент путем окисления некоего водородсодержащего вещества – молекулярного водорода, воды или сероводорода.
Наконец, достаточно недавно открыта совсем другая система фотосинтеза у галобактерий – микроорганизмов, развивающихся в концентрированных растворах поваренной соли и окрашивающих их в красный цвет. На самом деле они относятся к археобактериям – особым микроорганизмам, которые по многим признакам столь же отдалены от бактерий, как и от эукариот. Окраска обусловлена пигментом ретинальдегидом, который относится к классу каротиноидов. Этот пигмент родствен светочувствительному пигменту, ответственному за наше зрение. Он присоединен к белку бактериопсину на правах кофермента. Этот белок пронизывает мембрану клетки семью альфа-спиралями. Энергия фотона зеленого цвета отсоединяет ретинальдегид от бактериопсина. При этом бактериопсин срабатывает как протонная помпа и проталкивает протон сквозь мембрану. После этого ретинальдегид может реассоциировать с бактериопсином. Мы снова видим тот же принцип – создание градиента протонов и мембранного потенциала для синтеза АТФ. Причем градиент протонов создается самим фотосинтезирующим белком. При этом, как и при циклическом фосфорилировании, никакого дополнительного вещества не восстанавливается. Похоже, это самый простой из существующих в настоящее время путей фотосинтеза.
Какой мы можем сделать вывод? Разные фотосинтетические системы могли изобретаться неоднократно и основываться на разных ключевых пигментах. Рассмотренный нами тандем из двух фотосистем, основанных на хлорофилле, – один из многих вариантов и, по-видимому, наиболее эффективный. Обе фотосистемы были изобретены фототрофными бактериями, объединены цианобактериями (сине-зелеными водорослями) и унаследованы растениями (как именно – мы увидим дальше).
Надо заметить, что не все фототрофные бактерии являются автотрофами в полном смысле этого слова, т. е. способны развиваться на чисто минеральных средах. Большинство из них все же нуждается в тех или иных готовых органических веществах, так что фотофиксация углекислоты является для них всего лишь дополнительным источником органики.
Именно так обстоит дело у галобактерий. Причем у них есть еще одна поразительная особенность – они не способны поглощать сахара и из экзогенной органики фактически «питаются» одними аминокислотами.