ИСПОЛЬЗОВАНИЕ ИНБРЕДНЫХ ЛИНИЙ В ГЕНЕТИКЕ ПОВЕДЕНИЯ
Селектированные и инбредные линии представляют собой основной материал для работы в области генетики поведения. Селекция мышей и крыс на степень выраженности ряда признаков поведения была успешной. В настоящее время осуществлены селекционные программы, которые охватили практически весь диапазон признаков поведения, показавших генетическую изменчивость, – от скорости проведения нервного возбуждения в нервно-мышечном синапсе (см.: Лопатина, Пономаренко, 1987) до высокой и низкой способности к обучению (см.: 8.6). В то же время с помощью селекции формируются линии, которые состоят из животных, сходных по выраженности исследуемого признака и иногда ряда других признаков, но не обладающих генетической однородностью. Это затрудняет использование их в целях идентификации генов, влияющих на данный признак.
В ряде случаев удается провести работу по выведению инбредных селектированных линий, т.е. полностью гомозиготных животных с контрастными в случае двух линий величинами интересующего нас признака. Инбридинг (близкородственное скрещивание) начинают после того, как получены неперекрывающиеся межлинейные различия по интересующему нас признаку. Таких линий немного. В качестве примера можно привести инбредные линии мышей Short-и Long sleep, у которых после гипногенной дозы этанола развивается либо короткий, либо длинный период сна. Основную же массу составляют инбредные линии мышей и крыс, выведенные ранее, до начала активных исследований в области генетики поведения. Такие линии были необходимы для исследований по иммунологии, гисто-совместимости, онкологии и др. (см. также: Бландоваи др., 1983).
Инбредные линии мышей и крыс получаются при размножении животных путем братско-сестринского скрещивания в течение примерно двадцати поколений. Полезные свойства этих линий позволяют использовать их для генетического анализа и выявления локусов, влияющих на поведение. Образно говоря, инбредная линия представляет собой неумирающий клон, состоящий из генетически идентичных друг другу особей.
Ниже перечислены основные свойства, отличающие инбредные линии от генетически гетерогенных аутбредных (Wimer, 1992).
1. Изогенность. Все животные инбредной линии генетически иден тичны друг другу практически по всем локусам. Это означает, что для получения генетического "профиля" линии соответствующее определение можно сделать на одном животном. Для начала дочер ней колонии инбредной линии можно использовать только одну пару.
2. Гомозиготность. Инбредные линии гомозиготны практически по всем локусам. У них нет никаких "скрытых" генов, которые не выявлялись бы при размножении линии "в себе". Естественно, что никаких изменений генетического состава, связанных с дрейфом генов или отбором, в инбредной линии произойти не может.
3. Фенотипическое подобие. Поскольку инбредная линия не может иметь генетических отклонений, фенотипическое единообразие таких животных по многим признакам также оказывается более высоким, чем в аутбредных стоках. Это относится в первую очередь к признакам с моногенным или олигогенным (т.е. когда задействовано малое число генов) определением. Так, например, после введения гексобарбитала мышам линии Balb/c их сон продолжается в среднем 41±2 мин, а у животных аутбредного стока Swiss примерно столько же – 43±15 мин, но разброс величин у последних был значительно большим. Если предполагается оценить изменение длительности сна в ответ на какое-либо воздействие, то, согласно простым расчетам, для получения достоверного результата достаточно использовать лишь 15 мышей линии BALB/c, но 290 аутбредных мышей Swiss.
Инбредные линии могут иметь повышенную чувствительность к средовым воздействиям и, следовательно, фенотипическое сходство особей по признакам поведения, имеющим полигенную природу, может нарушаться (см. п. 7).
4. "Индивидуальность'' линии.Каждая инбредная линия генети чески уникальна; ее поведенческий и неповеденческий фенотипы всегда будут непохожи на фенотипы любой другой линии. Это оз начает, что практически для всех проявлений поведения можнооб наружить межлинейные различия. Из этого следует очень важный вывод о том, что выявление различий междулиниями по поведе нию требует в дальнейшем исследования их физиологических и био химических причин.
5. Долговременная стабильность.Инбредные линии остаются гене тически стабильными в течение больших отрезков времени. Приме ром может служить постоянство генетического состава двух родст венных сублиний – C57BL/6 и C57BL/10, которые, хотя и ведутся независимо уже более 50 лет, но остаются, как и в начале, на 97% генетически сходными.
Нарушение генетической стабильности инбредной линии может произойти в результате одной из трех причин – наличия остаточной гетерозиготности, новых мутаций и генетического "заражения". Остаточная гетерозиготность есть следствие того, что инбридинг даже в течение многих поколений по какой-то причине не может привести к полной гомозиготности. Возникновение мутаций – событие достаточно редкое, но есть случаи, когда появлялись мутации, влияющие и на поведение.
6. Возможность идентификации.Поскольку каждая линия имеет свой генетический "профиль", не составляет большого труда прове рить принадлежность животного к этой линии. Это особенно важно при подозрении на засорение линии посторонним генетическим ма териалом. Подобное "заражение" линии может, к сожалению, слу чаться при ошибках или небрежности в разведении.
Чувствительность.Гомозиготность особей инбредной линии считается причиной того, что эти животные часто оказываются более чувствительными к внешним воздействиям. Инбредные животные гомозиготны в том числе и по аллелям, которые не обязательно способствуют повышению их жизнеспособности, а нередко, наоборот, ведут к ее снижению. Противоположное явление, а именно малую чувствительность гибридов первого поколения к сре-довым влияниям, объясняют наличием генетического буфера, т.е. формированием гетерозиготного организма, у которого каждый аллель, вызывающий снижение жизнеспособности, с большой вероятностью имеет "парой" аллель другого происхождения, который такого действия не оказывает.
Отсутствие подобных "буферных" свойств у гомозиготного генотипа может быть причиной слабой защищенности инбредного организма от внешних, нарушающих развитие влияний. Это же явление лежит в основе иногда обнаруживаемой повышенной чувствительности животных инбредных линий к средовым воздействиям, что может приводить к появлению фенотипических различий между инбредными животными одной линии, противодействуя тем самым свойству фено-типического подобия, о котором говорилось выше (п. 3).
8. Использование в разных странах.Поскольку инбредные линии обладают свойствами изогенности, гомозиготности и возможностью быть идентифицированными, их можно использовать в лаборатори ях разных стран без опасения каких-либо генетических изменений в них, связанных с малым числом основателей колонии (как это имеет место при работе с аутбредными стоками, например селекти рованными линиями).
9. Использование данных прошлых лет.Данные по инбредным ли ниям в силу их генетической стабильности можно сравнивать с ре зультатами, полученными на тех же линиях, но ранее. Это облегча ет планирование и проведение новых исследований.
8.2.5. "ИЗМЕНЧИВОСТЬ" ФИКСИРОВАННЫХ КОМПЛЕКСОВ ДЕЙСТВИЙ И МИКРОЭВОЛЮЦИОННЫЕ ИЗМЕНЕНИЯ ПОВЕДЕНИЯ
Сочетание слов "изменчивость ФКД" находится в видимом противоречии с тем, что уже говорилось выше о стабильном характере простейших элементов инстинктивного поведения. Как разрешается такое противоречие? Несмотря на то что в целях описания и анализа поведение удобно рассматривать как состоящее из отдельных "форм" и/или актов, в реальности оно представляет собой непрерывный процесс, "поток", течение которого обозначается определенными конкретными актами.
Из этологического анализа, а также из данных генетико-популя-ционных исследований инстинктивного поведения следует, что природная генетическая изменчивость затрагивает не "рисунок", или паттерн (pattern), ФКД, а преимущественно частоту его выполнения и пороги их активации, т.е. их пространственно-временные характеристики. Первым внимание к этой проблеме привлек А.Меннинг (см.: Manning, 1967).
Таким образом, частота выполнения поведенческих актов (большая часть из которых – типичные ФКД), а также пороги их провокации в тех или иных условиях характеризуются высоким уровнем фенотипической и генотипической изменчивости поведения.
Иллюстрацией этого положения может служить изменчивость ФКД, входящих в репертуар поведения ухаживания самца дрозофилы (рис. 8.1).
Этот ритуал условно подразделяют на 4 стадии: ориентация, вибрация, лизание и копуляция. При мутациях может изменяться как длительность, так и интенсивность данного ФКД. Межвидовые различия в поведении близкородственных видов, как правило, также связаны с подобной изменчивостью поведения.
У млекопитающих (мышей, крыс, собак и др. видов) значительную часть межлинейных и межвидовых различий в поведении можно свести к различиям в частоте выполнения видоспецифических ФКД. Это особенно четко проявляется в поведении линейных лабораторных грызунов, селектированных на высокие и низкие показатели признаков поведения. В качестве примеров можно привести различия в интенсивности проявления материнского поведения – подтаскивание детенышей к гнезду (Hurniket al., 1973), число вертикальных стоек (исследовательское поведение) (van Abeelen, 1974), проявления агрессивности (например, вращение хвостом). Множество примеров межлинейных различий содержится в любом обзоре по генетике поведения (Меннинг, 1982; Эрман, Парсонс, 1984). У межвидовых гибридов, полученных от видов, в естественных условиях не скрещивающихся, проявления ФКД имеют ряд особенностей.
Одно из первых подробных исследований гибридных форм провел К. Лоренц. У межвидовых гибридов уток выявляются такие ФКД, которых практически не бывает в репертуаре обеих родительских форм. Можно полагать, что генотип данного вида позволяет обеспечить физиологические механизмы таких стереотипных действий, но в силу каких-то причин они не выявляются фенотипически.
В 1975 г. внимание к этой проблеме привлек П. Лейхаузен (Ley-hausen, 1975) при исследовании закономерностей проявления некоторых видоспецифических особенностей типичного ФКД кошачьих – "смертельного укуса" (см.: 7.5.3). Конкретной причиной, почему не все ФКД, на которые "способна" ЦНС данного вида, реализуются в репертуаре его поведения, могут быть различия в физиологических порогах их активации. В пользу этого предположения говорят исследования А. Хааса, посвященные поведению шмелей, о которых рассказывает в своей книге Лейхаузен.
Хаас наблюдал, как эти насекомые отыскивают свои гнезда. Изменяя расположение гнезд, он вызывал у шмелей состояние повышенного возбуждения и "стресса". Их поведение включало стереотипные элементы, свойственные другим видам шмелей того же рода. Такая потенциальная готовность к выполнению ФКД (в норме не характерных для вида), позволила предположить, что каждый вид изначально обладает всем "родовым" репертуаром поведенческих актов, но в обычных ситуациях реализует только определенную его часть. Экстренные ситуации, приводящие к высокому уровню активации ЦНС, могут выявить и остальные элементы "родового стереотипа".
Дезорганизацию гнездостроительного поведения наблюдал У. Дилгер (см.: Эрман и Парсонс, 1985) в эксперименте с гибридными особями попугаев-неразлучников. Они были получены от скрещивания таких двух видов, которые при постройке гнезда совершали различные действия: один из видов переносил гнездовой материал (в данном случае полоски бумаги) в клюве, другой – между перьями хвоста. Иными словами, два скрещивавшихся вида различались по ФКД при осуществлении врожденного поведенческого акта.
Гибридные особи в первый сезон размножения оказались не в состоянии построить гнездо, поскольку не могли справиться до конца с фиксацией гнездового материала. Они брали полоски бумаги в клюв (как один из родителей), затем пытались засунуть их между перьями, но делали это не так умело, как второй родитель. В результате постройка гнезда у этих птиц стала налаживаться только в последующие сезоны размножения, но их действия оставались нечеткими, и гнезда получались плохие.
Подобный феномен описан и в брачном поведении межвидовых гибридов рыбок-меченосцев. Самцы-гибриды первого поколения от скрещивания Xiphophorus helleri и X.montezumae cortezi в состоянии высокого полового возбуждения демонстрируют последовательность действий, характерную для самцов XheUeri, тогда как при меньшем уровне возбуждения их поведение похоже на Хлпогйеятае. Все описанные и сходные с ними наблюдения (например, рисунок песни у гибридных сверчков – рис. 8.3) остаются пока вне поля зрения нейрогенетиков и нейроэтологов, однако можно полагать, что большинство их следует объяснять физиологической модуляцией порогов провокации видоспецифических ФКД.
А. Меннинг еще в 1967 г. (Manning, 1967), анализируя генетические различия в половом поведении дрозофилы, высказал предположение, что генетическая изменчивость порогов и частоты выполнения ФКД может быть основой процесса микроэволюционных изменений поведения.
В таком случае возможно, что одним из механизмов формирования индивидуальных различий в поведении, связанных с генотипи-ческими различиями, является разная "легкость" провокации тех или иных ФКД.
Изменчивость порогов проявления видоспецифических движений может зависеть от уровня возбудимости отдельных структур мозга и/или его отдельных медиаторных систем. Модуляция порогов ФКД, по всей видимости, происходит и при действии фармакологических веществ, изменяющих поведение животных. Это дает основание надеяться, что анализ роли генотипа в эффектах фармакологических препаратов на уровне целого организма перспективно рассмотреть еще и с этой точки зрения. Возможно, что микроэволюционные изменения поведения, описанные в многочисленных наблюдениях (Панов, 1978), действительно реализуются на основе динамических изменений в порогах проявления ФКД.
В работе Л.В. Крушинского (подробнее см.: 8.6.1) по наследованию оборонительных реакций у собак впервые было показано, что уровень возбудимости ЦНС влияет на экспрессивность и пенетрант-ность отдельных поведенческих реакций (Крушинский, 1991).