Графический интерфейс пользователя

Графический интерфейс пользователя (Graphics User Interface - GUI) - ГИЛ является обязательным компонентом большинства современных программных продуктов, ориентированных на работу конечного пользователя. К графическому интерфейсу пользователя предъявляются высокие требования как с чисто инженерной, так и с художественной стороны разработки, при его разработке ориентируются на возможности человека.

Наиболее часто графический интерфейс реализуется в интерактивном режиме работы пользователя для программных продуктов, функционирующих в среде Windows, и строится в виде системы спускающихся меню с использованием в качестве средства манипуляции мыши и клавиатуры. Работа пользователя осуществляется с экранными формами, содержащими объекты управления, панели инструментов с пиктограммами режимов и команд обработки.

Пример 18.3. Средствами редактора диалогов Microsoft Word Dialog Editor построено диалоговое окно, обеспечивающее графический интерфейс пользователя. К числу типовых объектов управлении графического интерфейса относятся:

  • метка (label) - постоянный текст, не подлежащий изменению при работе пользователя с экранной формой (например, слова Фамилия Имя Отчество);
  • текстовое окно (text box) - используется для ввода информации произвольного вида, отображения хранимой информации в базе данных (например, для ввода фамилии студента);
  • рамка (frame) - объединение объектов управления в группу по функциональному или другому принципу (например, для изменения их параметров);
  • командная кнопка (command button) - обеспечивает передачу управляющего воздействия, например, кнопки <Сanсе1> <ОК> <Отмена>; выбор режима обработки типa <Bвoд>, <Удaлeниe>, <Peдaктиpoвaниe>, <Выход> и др.;
  • кнопка-переключатель <option button> - для альтернативного выбора кнопки из группы однотипных кнопок (например, семейное положение);
  • помечаемая кнопка <check button> - для аддитивного выбора несколько кнопок из группы однотипных кнопок (например, факультатив для посещения);
  • окно-список (list box) - содержит список альтернативных значений для выбора (например, ⌠Спортивная секция■);
  • комбинированное окно (combo box) - объединяет возможности окна-списка и текстового окна (например, ⌠Предметы по выбору■ - можно указать новый предмет или выбрать один из предлагаемого списка);
  • линейка горизонтальной прокрутки - для быстрого перемещения внутри длинного списка или текста по горизонтали;
  • линейка вертикальной прокрутки - для быстрого перемещения внутри длинного списка или текста по вертикали;
  • окно-список каталогов;
  • окно-список накопителей;
  • окно-список файлов и др.

Стандартный графический интерфейс пользователя должен отвечать ряду требований:

  • поддерживать информационную технологию работы пользователя с программным продуктом - содержать привычные и понятные пользователю пункты меню, соответствующие функциям обработки, расположенные в естественной последовательности использования;
  • ориентироваться на конечного пользователя, который общается с программой на внешнем уровне взаимодействия;
  • удовлетворять правилу "шести" - в одну линейку меню включать не более 6 понятий, каждое из которых содержит не более 6 опций;
  • графические объекты сохраняют свое стандартизованное назначение и по возможности местоположение на экране.
18.2. СТРУКТУРНОЕ ПРОЕКТИРОВАНИЕ И ПРОГРАММИРОВАНИЕ · Нисходящее проектирование · Модульное программирование · Структурное программирование Нисходящее проектирование Метод нисходящего проектирования предполагает последовательное разложение общей функции обработки данных на простые функциональные элементы ("сверху-вниз"). В результате строится иерархическая схема, отражающая состав и взаимоподчиненность отдельных функций, которая носит название функциональная структура алгоритма (ФСА) приложения. Последовательность действий по разработке функциональной структуры алгоритма приложения:
  • определяются цели автоматизации предметной области и их иерархия (цель-подцель);
  • устанавливается состав приложений (задач обработки), обеспечивающих реализацию поставленных целей;
  • уточняется характер взаимосвязи приложений и их основные характеристики (информация для решения задач, время и периодичность решения, условия выполнения и др.);
  • определяются необходимые для решения задач функции обработки данных;
  • выполняется декомпозиция функций обработки до необходимой структурной сложности, реализуемой предполагаемым инструментарием.
Подобная структура приложения (рис. 18.2) отражает наиболее важное - состав и взаимосвязь функций обработки информации для реализации приложений, хотя и не раскрывает логику выполнения каждой отдельной функции, условия или периодичность их вызовов. Разложение должно носить строго функциональный характер, т.е. отдельный элемент ФСА описывает законченную содержательную функцию обработки информации, которая предполагает определенный способ реализации на программном уровне. Функции ввода-вывода информации рекомендуется отделять от функций вычислительной или логической обработки данных. По частоте использования функции делятся на:
  • однократно выполняемые;
  • повторяющиеся.
Степень детализации функций может быть различной, но иерархическая схема должна давать представление о составе и структуре взаимосвязанных функций и общем алгоритме обработки данных. Широко используемые функции приобретают ранг стандартных (встроенных) функций при проектировании внутренней структуры программного продукта. Пример 18.4. Некоторые функции, например Ф2, далее неразложимы на составляющие: они предполагают непосредственную программную реализацию. Другие функции, например Ф1, Фm, могут быть представлены в виде структурною объединения более простых функций, например Ф11, Ф12 и т.д. Для всех функций-компонентов осуществляется самостоятельная программная реализация; составные функции (типа Ф1, Фm) реализуются как программные модули, управляющие функциями-компонентами. например, в виде программ-меню. Рис. 18.2. Функциональная структура приложения: Ц - цель; пЦ - подцель; П - приложение; Ф - функция МОДУЛЬНОЕ ПРОГРАММИРОВАНИЕ Свойства модуля Модульное программирование основано на понятии модуля - логически взаимосвязанной совокупности функциональных элементов, оформленных в виде отдельных программных модулей. Модуль характеризуют:
  • один вход и один выход - на входе программный модуль получает определенный набор исходных данных, выполняет содержательную обработку и возвращает один набор результатных данных, т.е. реализуется стандартный принцип IPO (Input - Process - Output) - вход-процесс-выход;
  • функциональная завершенность - модуль выполняет перечень регламентированных операций для реализации каждой отдельной функции в полном составе, достаточных для завершения начатой обработки;
  • логическая независимость - результат работы программного модуля зависит только от исходных данных, но не зависит от работы других модулей;
  • слабые информационные связи с другими программными модулями - обмен информацией между модулями должен быть по возможности минимизирован;
  • обозримый по размеру и сложности программный элемент.
Таким образом, модули содержат определение доступных для обработки данных, операции обработки данных, схемы взаимосвязи с другими модулями. Каждый модуль состоит из спецификации и тела.Спецификации определяют правила использования модуля, а тело - способ реализации процесса обработки. Модульная структура программных продуктов Принципы модульного программирования программных продуктов во многом сходны с принципами нисходящего проектирования. Сначала определяются состав и подчиненность функций, а затем - набор программных модулей, реализующих эти функции. Однотипные функции реализуются одними и теми же модулями. Функция верхнего уровня обеспечивается главным модулем; он управляет выполнением нижестоящих функций, которым соответствуют подчиненные модули. При определении набора модулей, реализующих функции конкретного алгоритма, необходимо учитывать следующее:
  • каждый модуль вызывается на выполнение вышестоящим модулем и, закончив работу, возвращает управление вызвавшему его модулю;
  • принятие основных решений в алгоритме выносится на максимально "высокий" по иерархии уровень;
  • для использования одной и той же функции в разных местах алгоритма создается один модуль, который вызывается на выполнение по мере необходимости. В результате дальнейшей детализации алгоритма создается функционально-модульная схема (ФМС) алгоритма приложения, которая является основой для программирования (рис. 18.3).
Рис. 18.3. Функционально-модульная структура приложения Пример 18.5. Некоторые функции могут выполняться с помощью одного и того же программного модуля (например, функции Ф1 и Ф2).
  • Функция Ф3 реализуется в виде последовательности выполнения программных модулей.
  • Функция Фm реализуется с помощью иерархии связанных модулей.
  • Модуль n управляет выбором на выполнение подчиненных модулей.
  • Функция Фx реализуется одним программным модулем.
Состав и вид программных модулей, их назначение и характер использования в программе в значительной степени определяются инструментальными средствами. Например, применительно к средствам СУБД отдельными модулями могут быть:
  • экранные формы ввода и/или редактирования информации базы данных;
  • отчеты генератора отчетов;
  • макросы;
  • стандартные процедуры обработки информации;
  • меню, обеспечивающее выбор функции обработки и др.
Алгоритмы большой сложности обычно представляются с помощью схем двух видов:
  • обобщенной схемы алгоритма - раскрывает общий принцип функционирования алгоритма и основные логические связи между отдельными модулями на уровне обработки информации (ввод и редактирование данных, вычисления, печать результатов и т.п.);
  • детальной схемы алгоритма представляет содержание каждого элемента обобщенной схемы с использованием управляющих структур в блок-схемах алгоритма, псевдокода либо алгоритмических языков высокого уровня.
Наиболее часто детально проработанные алгоритмы изображаются в виде блок-схем согласно требованиям структурного программирования; при их разработке используются условные обозначения согласно ГОСТ 19.003-80 ЕСПД (Единая система программной документации). Обозначения условные графические, ГОСТ 19.002-80 ЕСПД. Схемы алгоритмов и программ. Правила обозначения. СТРУКТУРНОЕ ПРОГРАММИРОВАНИЕ Структурное программирование основано на модульной структуре программного продукта и типовых управляющих структурах алгоритмов обработки данных различных программных модулей (рис. 18.4). Рис. 18.4. Блок-схема алгоритма поиска в базе данных. В любой типовой структуре блок, кроме условного, имеет только один вход и выход, безусловный переход на блок с нарушением иерархии запрещен (оператор типа GoTo в структурном программировании не используется). Виды основных управляющих структур алгоритма приведены в табл. 18.1. Пример 18.6. Алгоритм поиска в базе данных сведений о максимальном окладе сотрудников (рис. 18.4). Таблица 18.1. Управляющие структуры алгоритмов

 

Типы управляющей структуры Применение управляющей структуры
Последовательность Блок 1 Блок 2 Конец Последовательность включает фиксированный перечень блоков (операторов). Каждый очередной блок обрабатывается после завершения предыдущего без дополнительных условий. Для изменения порядка обработки блоков редактируется последовательность выполняемых
Альтернатива (условие выбора) Начало Да Условие Нет Альтернатива1 Альтернатива2 Конец В блоке Условие содержится условие выбора альтернативы обработки. Каждая альтернатива выполняется 1 раз; выполнение одной из двух альтернатив - обязательно. Развитие данного типа структуры является множественная альтернатива, когда последовательно проверяются условия выполнения определенных альтернатив. Если очередное условие истинно, обрабатывается соответствующая ему альтернатива, после чего происходит выход. В противном случае - переход к проверке условия следующей альтернативы. Если ни одно из условий не выполнилось, происходит выход.
Цикл ("пока") Начало Условие Нет Да Тело цикла Конец В блоке Условие задается условие тела цикла - определенной обработки. Если условие не выполняется, цикл прерывается и осуществляется выход. Условие может содержать счетчик повторений тела цикла либо логическое условие. Тело цикла - произвольная последовательность блоков (операторов) обработки