ИНЖЕНЕРНАЯ ГЕОДЕЗИЯ 9 страница

 

10.2. Камеральные работы

1) Ежедневный контроль разбивки пикетов и вычисления углов поворота трассы.

2) Математическая обработка результатов измерений заключается в вычислении допустимых и полученных невязок в теодолитных и нивелирных ходах и уравнивании этих ходов. Допустимая невязка в теодолитных ходах fβ = 3'√n, где n – количество сторон в ходе, для хода нивелирования fh = ±50 мм √L, где L – длина хода в километрах или fh = ± 10мм√n,

где n – число станций в ходе.

Кроме того, вычисляют ведомость прямых и кривых участков трассы, в которой записывают значения углов поворота трассы, пикетажные значения главных точек кривых, значения прямых и кривых участков трассы, домеров. Контроль вычислений выполняют по следующим формулам: ∑2Т - ∑К = ∑Д; ∑Р + ∑К = S = ; φ прав. - φлев. = αкон. – αнач., где Р – прямые вставки, К – длины кривых участков трассы, S – длина трассы, φ – угол поворота трассы вправо и влево, α – дирекционный угол.

3) Графические работы заключаются в составлении плана трассы в масштабах 1:5000 и высотой сечения рельефа 2м в горной местности и 1:10000 и высотой сечения рельефа 5метров в равнинной. Кроме плана, вычерчивают продольный профиль трассы и профили поперечников. Продольный профиль составляют в масштабе: 1:5000, 1:10000 по горизонтали, по вертикали масштаб выбирают в 100 раз крупнее горизонтального для наглядности профиля. На продольном профиле проводят проектную линию, вычисляют проектные и рабочие отметки пикетов и плюсовых точек и объемы земляных работ. В графе «кривые» строят кривые по пикетажным значениям их главных точек, на прямых участках трассы над прямой записывают название и значение румба, под прямой – длину прямого участка.

Профили поперечников строят в одинаковом масштабе по горизонтали и вертикали.

 

11. Опорные геодезические сети

Служат исходными данными (координаты и высоты) для выполнения геодезических работ. В зависимости от наличия координат или высот бывают плановые и высотные.

а). Государственная геодезическая сеть. Плановые сети строятся способами триангуляции, трилатерации и полигонометрии 1, 2, 3, 4 классов. Триангуляция строится в виде треугольников (рис. 70), в которых измеряют горизонтальные углы, уравнивают их (считают и распределяют полученную угловую невязку), от базисных сторон (измеренных с большой точностью) по теореме синусов вычисляют горизонтальные проложения сторон треугольников, дирекционные углы, приращения координат и координаты пунктов. В качестве исходных координат для построения сетей 1-го класса берут координаты пунктов, полученных с высокой точностью из астрономических измерений. Эти пункты называют пунктами Лапласа. Второй класс развивают от первого, третий от пунктов первого и второго и так далее, то есть сгущают сети высокого класса точности сетями более низких классов. Для текущих геодезических работ чаще всего не нужны исходные данные, полученные с высокой точностью, кроме того, требуется большая густота пунктов, поэтому требуется развивать сети низких классов.

Полигонометрию строят в виде замкнутых или разомкнутых ходов, образующих полигоны. В них измеряют при помощи высокоточных и точных теодолитов горизонтальные и вертикальные углы и длины сторон инварными проволоками или дифференциальными светодальномерами. По полученным измерениям считают координаты пунктов. Закрепляют пункты государственной геодезической сети геодезическими центрами, грунтовыми и стенными реперами. Они несут координаты геодезического пункта. Грунтовый репер представляет собой металлическую трубу, с бетонным якорем, которая закладывается в пробуренную скважину и заливается бетоном. Реперы закладывают ниже глубины сезонного промерзания грунта. Верх репера находится на расстоянии 30 – 50 см ниже поверхности земли. После закладки репер окапывается в радиусе 1 метра или оформляется в виде люка и привязывается не менее чем к двум постоянным предметам местности с составлением абриса привязки. Координаты и высоту репера можно определять не раньше чем через неделю со дня закладки. Над грунтовыми реперами устанавливают наружные знаки в виде сигналов и пирамид для обеспечения видимости. Их высота зависит от высоты препятствия и бывает до 50 метров. Ось визирных цилиндров наружных знаков проходит через центр репера, над которым он установлен. Каталог координат и высот реперов и абрисы привязки сдают в геодезические отделы областного или городского управления архитектуры и градостроительства или Госгеонадзор.

Стенные реперы закладывают путем бетонирования металлических стержней или уголков в стены и фундаменты капитальных сооружений, водонапорных башен, в устои мостов и т.д., обычно на высоте 0,7 – 1 м над поверхностью земли.

 

Таблица 2 – Характеристика сетей триангуляции и полигонометрии

Класс триангуляции Длина стороны, км Ср. квадратическая ошибка измерения
угла Базиса или стороны
> 20 (20 – 25) 0,7" (0,4") 1:400000 (1:300000)
7 – 20 (7 – 20) 1,0 (1,0) 1:300000 (1:250000)
5 – 8 (3 – 8) 1,5 (1,5) 1:200000 (1:200000)
2 – 5 (0,25 – 2) 2,0 (2,0) 1:200000 (1:25000)

 

В скобках указаны данные о полигонометрии.

Высотная государственная геодезическая сеть представляет собой нивелирные сети 1, 2, 3, 4 классов. Пункты плановой геодезической сети могут использоваться как пункты нивелирования. Методика выполнения работ изложена в Инструкции по нивелированию 1, 2, 3, 4 классов. Требования к построению сетей нивелирования представлены в таблице 3.

 

Таблица 3 – Характеристика сетей нивелирования

 

Класс нивелирования Периметр полигона, км Невязки в полигонах
наивысш. точность
500 – 600 ±5мм √L
150 – 300 ±10мм √L
±20мм √L

 

Пункты высотной государственной сети закрепляют на местности капитальными грунтовыми реперами, стенными реперами или марками.

б). Геодезические сети сгущения – это триангуляция и полигонометрия 1, 2 разрядов, развиваемые от пунктов государственной геодезической сети. Основные параметры сетей представлены в таблице 4. В скобках данные для полигонометрии 1-го, 2-го разрядов.

 

 
 

 

 


Рис. 70. Схема триангуляции «цепочка треугольников»

 

Таблица 4 – Основные параметры сетей сгущения 1-го и 2-го разрядов

    Разряд Ср. квадратическая ошибка измерения   Длина сторон, км Число треугольников в цепи (сторон в ходе)
угол выходная сторона (длина)
5" 1:50000 (1:10000) (0,12 – 0,8) (15)
10" 1:20000 (1:5000) (0,08 – 0,35) (15)

 

Высотное положение пунктов определяют методом нивелирования 4 класса и техническим нивелированием (допустимая невязка ± 50 мм √L).

в). Съемочная геодезическая сеть (съемочное обоснование) создается с целью сгущения геодезической сети для производства топографических съемок. Способы развития – микротриангуляция, теодолитно-нивелирные ходы, тахеометрические и мензульные ходы, прямые, обратные и комбинированные засечки. Высоты пунктов получают методами геометрического нивелирования (микротриангуляция, теодолитно-нивелирные ходы), тригонометрического нивелирования (тахеометрические ходы). Длины сторон в ходах в первых двух случаях измеряют при помощи светодальномеров, мерных лент или рулеток, во втором – нитяным дальномером. Камеральные работы заключаются в следующем: контроль полевых документов – проверка графического материала, повторение всех вычислений, проведенных в полевых условиях; вычисление углов наклона и горизонтальных проложений длин сторон полигона; вычисление ведомости координат точек теодолитного хода (см. методические указания по выполнению расчетно-графических работ, часть 1).

г). Разбивочная геодезическая сеть служит для переноса в натуру и возведения сооружений – высокоточной и технической точности разбивки.

В настоящее время для создания геодезических сетей используют методы космической геодезии.

Российская спутниковая система ГЛОНАСС (ГЛОбальная Навигационная Спутниковая Система) включает 24 спутника (создана в период 1982-1995 г.г.). Спутники находятся в 3-х орбитальных плоскостях: 1-я – 1-8 спутники, 2-я – 9-16, 3-я – 17-24. Расстояния между ними по широте 45°.

Американская система NAVSTAR GPS (глобальная система позиционирования) содержит по четыре спутника в 6-ти орбитальных плоскостях.

Высота орбиты навигационных спутников ГЛОНАСС – 19-100 км, NAVSTAR – 20-180 км. Спутники ГЛОНАСС характеризуются радиосигналом высокой точности ВТ и стандартной точности СТ.

Систему определения местоположения делят на три сегмента (подсистемы):

А – подсистема орбитального комплекса (созвездие ИСЗ – космический сегмент), Б – наземная подсистема контроля и управления (группа станций слежения, станции загрузки на ИСЗ, главные станции). В – подсистема пользователей – комплекс аппаратно-программных средств, реализующих основное назначение глобальной позиционирующей системы (GPS) – определение координат точек местности для геодезического применения.

Приемники GPS делятся на две группы. Первая – поочередное отслеживание спутников, спутники бывают одноканальные и двухканальные (второй канал административный). Вторая группа – многоканальные, измерение расстояния до четырех и более спутников одновременно (4, 6, 8, 10 и 24 канала слежения). Определяются координаты в режиме реального времени, скорость и траектория движения, одновременно обрабатываются сигналы всех спутников рабочего созвездия.

По точности спутниковые приемники делятся на три класса: навигационный класс – точность определения координат 150-200 м, класс картографии и ГИС – 1-5 м, геодезический класс – до 1 см (1-3 см в кинематическом режиме, до 1 см при статических измерениях).

 

 

Рис. 71. Схема измерения координат точек земной поверхности

спутниковыми приемниками

Спутниковые методы создания геодезических сетей делят на геометрические и динамические. В геометрическом методе искусственные спутники Земли (ИСЗ) используют как высокую визирную цель, в динамическом - ИСЗ является носителем координат. В геометрическом методе спутники фотографируют на фоне опорных звезд, что позволяет определить направления со станции слежения на спутники. Фотографирование нескольких положений ИСЗ позволяет получить координаты определяемых пунктов. Эту же задачу в динамическом методе решают путем измерения расстояния до спутников радиотехническими средствами. Создание навигационных систем в России и в США (ГЛОНАСС, GPS) позволяет в любой момент времени в любой части Земли определять координаты точек с высокой точностью.

Современная концепция геодезического обеспечения страны

В настоящее время единые системы координат на территории России

задаются соответственно государственной геодезической сетью (ГГС) и

государственной нивелирной сетью (ГНС). Государственная геодезическая

сеть имеет среднюю плотность 1 пункт на 38 кв. км, а государственная

нивелирная сеть – 1 репер на 34 кв.км. Завершенная к середине 90-х годов прошлого столетия государственная геодезическая сеть страны (ГГС) построена методами триангуляции и полигонометрии. Она содержит более 464 тыс.

геодезических пунктов. Точность этой сети позволяет использовать ее для обоснования топографических съемок до масштаба 1:2000 и крупнее.

В результате математической обработки (заключительного уравнивания) в 1996 году получена новая высокоточная система геодезических координат СК-95, распространенная на всю территорию страны. Точность взаимного положения пунктов в этой системе координат составляет: 2-4 см - при расстояниях между пунктами 10-15 км; 10-20 см – при расстояниях 100-200 км; 0,5-0,8 м - при расстояниях около 1000 км. Заключительное уравнивание ГГС завершило этап истории развития геодезии в России, в котором система геодезического обеспечения основывалась на традиционных методах линейно-угловых геодезических измерений. Спутниковые методы по сравнению с традиционными методами обладают рядом преимуществ. В структуре государственной геодезической сети, основанной на использовании современных спутниковых технологий, предусматривается построение геодезических сетей высшего класса точности, связанных между собой по традиционному геодезическому принципу «перехода от общего к частному». Высшим звеном всей структуры должна стать фундаментальная астрономо-геодезическая сеть (ФАГС). Она реализует общеземную геоцентрическую систему координат при решении задачи координатно-временного обеспечения страны, стабильность системы координат во

времени, метрологическое обеспечение высокоточных космических средств измерений. Для этого необходимо использовать весь комплекс существующих космических средств измерений (лазерные, радиоинтерферометрические и др.). Следующее звено - высокоточная геодезическая сеть (ВГС). Ее основные функции: распространение на всю территорию страны общеземной геоцентрической системы координат, определение точных параметров взаимного ориентирования общеземной и референцной систем координат, объединение плановой и высотной геодезических основ. Пункты ВГС необходимо привязать к реперам высокоточного нивелирования со средней квадратической ошибкой определения высот не превосходящей 5 см, что позволит получать из спутниковых определений также и высоты. Третьим звеном новой структуры ГГС является спутниковая геодезическая сеть 1 класса (СГС-1). Она должна обеспечить оптимальные условия использования спутниковой аппаратуры, в том числе одночастотных приемников ГЛОНАСС/GPS.

Все сети связаны между собой путем последовательного вписывания одной в другую: ФАГС - опорная для ВГС, а ВГС и ФАГС - для СГС-1. Предусматривается привязка к ним и существующей ГГС, которая в новой структуре – лишь низшее звено, исполняющее роль сети сгущения.

 

Таблица 5 – Характеристика геодезических сетей

Уровень сети   Общее число пунктов Расстояние между пунктами Относительная погрешность взаимного положения смежных пунктов  
ФАГС   50-70 700-1000 км.   1-2∙10-8 (1-2 см)
ВГС 500-700 150-300 км 1∙10-7
СГС-1 12-15 тысяч 40-50 км 1-2 см

Выполнение указанных мероприятий позволит:

- повысить точность и оперативность геодезических определений;

- внедрить методы спутникового нивелирования вместо геометрического нивелирования 3 и 4 классов;

- обеспечить изучение деформаций земной коры, являющихся предвестниками землетрясений и других опасных явлений;

- создать систему постоянных наблюдений за динамикой уровней морей на уровенных постах и прогноза их состояния;

- обеспечить геодезическое обоснование картографирования страны и создание геоинформационных систем;

- установить высокоточную единую геодезическую систему координат и поддерживать ее на уровне современных и перспективных требований экономики, науки и обороны страны.

Однако спутниковые технологии не всегда можно использовать при решении ряда геодезических задач, что приводит к необходимости использовать классические методы измерений.

Спутниковая геодезическая аппаратура «Землемер-Л1» является результатом совместной работы Российского института радионавигации и времени, известной швейцарской фирмы «Лейка» и предназначена для решения топографо-геодезических задач на основе сбора данных от спутников системы GPS (построение опорных сетей, сетей сгущения, топографические съёмки и др.).

Аппаратура «Землемер-Л1» состоит из двух полукомплектов, каждый из которых включает антенну АТ-11, датчик - 61, контроллер СК - 33 (рис. 72) и вспомогательные средства: аккумулятор питания; соединительные кабели; рулетка для измерения высоты установки антенны; штатив, рейка и стойка быстрого развёртывания для установки антенны.

В процессе работы антенну устанавливают либо на трегер на штативе, отцентрированном над определяемой точкой на рейке (рис. 73), или на стойке быстрого развёртывания с рейкой (рис. 73). Это зависит от того, в каком режиме ведут измерения: в статическом, кинематическом или в режиме съёмки с кратковременной остановкой (иду – стою). Соответственно точность геодезических измерений составляет (5÷10 мм)+2·10-6·D и (10÷30 мм)+2·10-6·D, где D – длина базовой линии в мм.

 

Рис. 72. Основные блоки спутниковой геодезической системы «Землемер-Л1»:

1 – антенна АТ-11; 2 – контроллер CR-33 (или CR-44); 3 – датчик SR-61

Рис. 73. Варианты установки антенны: а – на штативе с трегером, б – на переносной рейке, в – на стойке быстрого развертывания с рейкой

 

12. Топографические съемки

 

Съемка – совокупность измерительных действий на местности и вычислительных и графических работ в камеральных (аудиторных) условиях, выполняемых с целью составления плана или карты местности.

Съемки классифицируются по различным признакам:

1. По характеру снимаемых объектов: контурная или горизонтальная – в результате съемки местности на плане или карте получают положение контуров и предметов в горизонтальной плоскости, то есть ситуации; высотная – в результате съемки местности на плане или карте получают изображение только рельефа; контурно-высотная (топографическая) – на плане или карте получают изображение и ситуации, и рельефа.

2. По применяемым инструментам:

· теодолитная

· космическая

· тахеометрическая

· мензульная

· нивелирная

· фототопографическая

· глазомерная

· буссольная и т.д.

Все работы по съемке местности делятся на 2 стадии: полевые и камеральные. Полевые работы заключаются в непосредственном измерении определяемых величин в поле. Камеральные работы делятся на вычислительные и графические.

 

12.1. Теодолитная съемка

Целью теодолитной съемки является получение контурного плана местности, то есть ситуации. Съемочным обоснованием для нее служат полигоны (или теодолитные ходы) замкнутой или разомкнутой формы. Длина стороны полигона колеблется от 50 до 400 метров. В исключительных случаях допускается длина 800 метров. При большой величине участка внутри замкнутого полигона прокладывают диагональный ход, который служит одновременно и контролем правильности прокладывания основного хода.

Длины сторон измеряют с точностью не менее 1:1500 – 1:2000. Точность измерения углов должна быть не ниже 1'. Основные инструменты: теодолит, лента (дальномер), рулетка, эклиметр, эккер.

12.1.1. Полевые работы

при теодолитной съемке заключаются в следующем:

1.Рекогносцировка (разведка) местности. Цель – ознакомиться с участком, оптимально выбрать и закрепить точки теодолитного хода, отыскать точки геодезической сети (или сети сгущения) с целью привязки.

2.Привязка теодолитного хода к опорной геодезической сети.

3.Угловые измерения (журнал).

4.Линейные измерения (журнал).

5.Съемка ситуации различными способами: перпендикуляров, полярных координат, линейных засечек, угловых засечек, створный и способ обмера.

Способ перпендикуляров (прямоугольных координат) заключается в следующем. На стороне теодолитного хода (на рисунке 1 – 7) измеряют при помощи рулетки расстояние до осевой точки перпендикуляра. Затем строят в ней прямой угол и на полученном направлении измеряют расстояние до снимаемой точки. Длина перпендикуляров не должна превышать 4 м, 6 м, 8 м соответственно для съемок в масштабах 1:500, 1:1000, 1:2000, в этом случае их строят на глаз. При большей длине перпендикуляра прямой угол строят при помощи экера или теодолита.

При съемке способом полярных координат (на рисунке от стороны 1 – 2) из точки теодолитного хода (2) измеряют горизонтальный угол теодолитом до направления на снимаемую точку и расстояние до нее. Измеряемые длины не должны превышать 40, 60 и 100 метров для тех же масштабов.

Способ линейных засечек заключается в измерении расстояний от точек теодолитного хода до снимаемой точки (сторона 6 – 7). Измеряемые длины не должны превышать длины мерного прибора.

Измерив два горизонтальных угла от стороны теодолитного хода до направления на точку местности, снимают точку способом угловых засечек (сторона 2 – 3 на рисунке 74). Значения измеряемых углов не должны быть менее 30° и более 150°.

В случае, когда точка местности находится на стороне теодолитного хода или на ее продолжении, ее снимают створным способом: измеряют расстояние от ближайших точек теодолитного хода (от точки 3 на рисунке 74).

Сняв две точки контура одним из вышеперечисленных способов, остальные его точки можно снять способом обмера: измерять расстояния между частями контура (если он прямоугольной формы) от одной исходной точки до другой.

Все измеренные значения углов и расстояний заносят на абрис съемки. Абрис – это схематический чертеж, который составляют на глаз, не в масштабе. Он должен содержать полные сведения о снимаемой местности, числовые результаты съемки и пояснения: названия контуров, улиц, характер дорожных покрытий. Существуют два варианта ведения абриса – общий или постраничный, на каждую сторону полигона. Абрис является документом, который получают в результате полевых работ (рис. 74).

12.1.2. Камеральные работы при теодолитной съемке

1. Вычерчивание плана теодолитной съемки. Снятые контуры наносят с абриса съемки теми же способами, которыми производилась съемка при помощи геодезического транспортира, поперечного масштаба и циркуля – измерителя.

2. Оформление плана в соответствии с условными знаками.

 

29,8 2

переулок

8,2 1,9 41°11' 3 7,8 Громова

1 4,3 10 28,7

48°12'

1,5

деревянный 35°11' 5,3

1,5 2,8 пристрой люк смотрового колодца

1,5

травяное покрытие 4

столб

ЛЭП

 

 
 


7 грунтовая дорога

 

 

Рис. 74. Абрис теодолитной съемки

 

12.2. Тахеометрическая съемка

«Тахеометрия» в переводе с греческого означает «быстрое измерение». Цель ее – получение топографического плана местности (ситуация + рельеф). Основой ее являются теодолитно-нивелирные ходы: координаты вершин получают как в обычном теодолитном ходе, а отметки Н определяют путем геометрического нивелирования.

Так же как и любая съемка тахеометрическая содержит полевые и камеральные работы.

Отличительные особенности съемки:

1) Съемка контуров и рельефа с пунктов съемочного обоснования выполняется полярным способом. При этом горизонтальные углы измеряют при одном (основном) положении вертикального круга, а расстояния по нитяному дальномеру.

2) Превышения и высоты съемочных точек определяют методом тригонометрического нивелирования, то есть измеряют угол наклона и расстояние до точки.

 

12.2.1. Полевые работы

1.Рекогносцировка: закрепление точек съемочного обоснования.

2.Прокладка теодолитно-нивелирного хода: те же работы, что и выше.

3.Съемка ситуации и рельефа:

а) Приведение теодолита (тахеометра) в рабочее положение: центрирование и горизонтирование.

б) Определение МО, измерение высоты инструмента i.

в) Ориентирование 0° лимба горизонтального круга вдоль одной из сторон хода, откладывание i на рейке.

г) Собственно съемка: измерение горизонтальных углов β, углов наклона ν, расстояний читанных по рейке (от теодолита до точки) D с занесением на абрис съемки.

При тахеометрической съемке применяют координатные теодолиты-тахеометры: номограммные и электронные (рис. 75). Эти инструменты предназначены для непосредственного измерения в полевых условиях, превышений, горизонтальных проложений и приращений прямоугольных координат. Электронные тахеометры разделяются на полярные: β, d, h (Н - высота) определяются и высвечиваются на табло; ортогональные: измеряются и вычисляются ∆х, ∆у, h, Χ, Υ, Η. Формулы, на основе которых составлена программа мини – ЭВМ следующие: d = D·cosν; h = d·sinν; ∆х = d·cosν; ∆у = d·sinν, где d – горизонтальное проложение, ν – угол наклона линии местности.

 

12.2.2 Камеральные работы

1.Контроль полевых документов.

2.Вычисление Х, У, Н точек съемочного обоснования.

3.Обработка журнала тахеометрической съемки: вычисление ν, d, h, Η по тахеометрическим таблицам или по формулам. Пояснением формул служит рисунок 77.

рейка

 
 

 

 


V

 

визирный луч hтабл.

В

L