Тензоры напряжений и деформаций

Основные законы МСС

- Законы сохранения, 2-й закон термодинамики, уравнения Максвелла

- Определяющие соотношения: закон Фика, реологические соотношения (т.е. соотношения между деформацией и напряжением).

 

В двумерных и трехмерных задачах деформации и напряжения в сплошной среде описываются тензорами.

Тензор напряжений sij - сила, действующая в направлении j на единичную площадку, перпендикулярную оси i.

Тензор напряжений – симметричный.

=

 

Пусть ui является проекцией на ось i перемещения материальной точки с исходным координатным вектором x:

ui =x’i -xi.

 

Тензор деформаций определяется следующим образом:

 

uij = ½ (∂ui/∂xj + ∂uj/∂xi + ∂uk/∂xi ∂uk/∂xj )

 

Расстояние между бесконечно близкими точками dl изменяется:

dl'2 = dl2 + 2uikdxidxk

Тензор деформаций uij является симметричным: uij = uji.

Значения его компонент зависят от системы отсчета. Но есть комбинации компонент – инварианты тензора, которые не зависят от системы отсчета.

Первый инвариант тензора деформации I1 = относительное изменение объема dV/V.

I1 = ∑ uii

Здесь, как обычно при обращении с тензорами, предполагается суммирование по повторяющемуся индексу.

Реологические определяющие соотношения – это соотношения между компонентами uij и их производными и sij и их производными.

 

Для многих сред в реологических соотношениях присутствует

тензор скоростей деформаций

eij = ∂uij/∂t