И ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ

МАТЕРИАЛОВЕДЕНИЕ

Что такое ценность?

А Р Тюрго специально анализировал этимологию данного слова. С 172 и далее По существу он пытался поставить проблему «Общей теории ценности» (с 177). Его идеи содержат намеки на истинный подход, но он четко им не выражен. У него много неопределенностей, скажем, он исходит из синонимии слов обмен и торговля (с 178), а это не может быть основанием для адекватной трактовки ценности.

Полезность – значение – ценность

«На языке торговли часто бессознательно смешивают цену и ценность, ибо на самом деле указание цены заключает в себе и указание ценности. Но, тем не менее, это весьма различные понятия, которые важно различать» с 183

Можно не соглашаться с его решением проблемы и пойти далее. Но его величайшей заслугой следует считать осмысление самой этой проблемы.

Важно то, что он начинает анализ со значения этого слова в латинском языке и показывает сохранение исходных его смыслов в качестве самостоятельных.

 

Необходимо составить эволюционные ряды на русском и ряде главных иностранных языков, прежде всего английском.

Ютилити - вэлю – кост - прайс

Полезность ® значимость ® стоимость ® цена ® ценность

 

 

Цены

┌─────┴────┐

договорные ® стандартные

┌─────┴────┐

обособленные ® системы (тарифы)

(таксы) ┌─────┴────┐

назначаемые ® утверждаемые

производителем государством

┌─────┴────┐

жесткие ® гибкие

 

 

+++

 

МАТЕРИАЛОВ ДЛЯ СТРОИТЕЛЬСТВА*

КОНСПЕКТ ЛЕКЦИЙ

 

 

По материалам пособия:

Белов В.В., Петропавловская В.Б.Краткий курс материаловедения и технологии конструкционных материалов для строительства: Учебное пособие. – 2-е изд. – Тверь: ТГТУ, 2005. – 180 с.


 

ВВЕДЕНИЕ

Общие сведения.Строительное материаловедение является наукой о строительных материалах и изделиях. Без достаточных знаний о многочисленных разновидностях строительных материалов, способах их производства и качественных показателях, методах их правильного хранения и использования невозможно проектировать и строить здания и сооружения, реконструировать или ремонтировать их, выполнять научно-технические разработки в области строительства.

Строительные материалы – это основа строительства. В общих сметах строительных объектов на стоимость материалов обычно приходится 50-65 %, поэтому экономия при строительстве объекта во многом зависит от эффективности применения строительных материалов и изделий и правильного их выбора. Использование строительных материалов должно базироваться на прочных знаниях о производстве, показателях качества, методах проверки основных свойств материалов в лабораторных и производственных условиях, их эффективных областях применения. Успехи практики производства и применения строительных материалов во многом зависят от того, в какой мере она учитывает научные положения взаимосвязи состава и структуры (строения) материалов с их свойствами, а также, насколько уровень технологии и качественных показателей соответствует мировым достижениям в данной отрасли.

Наука и производство строительных материалов имеют глубочайшую историю развития. Возникновение науки и каждый этап ее развития всегда были обусловлены производством. В свою очередь, развитие производства являлось следствием возрастающих потребностей в материалах для строительства у общества.

Классификация строительных материалов. Исходя из условий работы материалов в сооружении, их можно разделить на две группы:

1. Конструкционные материалы универсального типа: а) природные каменные материалы; б) искусственные каменные материалы обжиговые (керамика, стекло, ситаллы) и безобжиговые на основе вяжущих веществ (бетон, железобетон, строительные растворы); в) металлы (сталь, чугун, алюминий, сплавы); г) полимеры; д) древесные материалы.

2. Строительные материалы специального назначения, необходимые для защиты конструкций от вредных воздействий среды, а также для повышения эксплуатационных свойств и создания комфорта: а) теплоизоляционные; б) акустические; в) гидроизоляционные; г) отделочные; д) антикоррозийные и др.

Техническое регулирование и стандартизация строительных материалов и изделий. В соответствии с законом РФ «О техническом регулировании», вступившим в действие с 1 июля 2003 года, правовое регулирование отношений в области установления, применения и исполнения обязательных требований к продукции, а также регулирование отношений в области оценки соответствия обеспечивается техническим регулированием. Основным нормативным документом в области технического регулирования, имеющим силу закона, является технический регламент.

Технический регламент – нормативный документ, устанавливающий обязательные для применения и исполнения требования к продукции, процессам производства, эксплуатации и другим объектам технического регулирования и принимаемый в целях безопасности граждан, имущества, окружающей среды, животных и растений.

Стандартизация – это установление и применение правил с целью упорядочения деятельности в определенной области на пользу и при участии всех заинтересованных сторон при соблюдении условий эксплуатации и требований безопасности. Результатом работы по стандартизации является принятие стандарта.

Стандарт это нормативный документ, в котором устанавливают характеристики продукции, правила осуществления и характеристики процессов производства, эксплуатации, хранения, перевозки, реализации и утилизации, работ или оказания услуг, а также требования к терминологии, символике, упаковке, маркировке.

Национальную систему стандартизации составляют:

национальные стандарты, к которым в России относят государственные стандарты (ГОСТ Р), и межгосударственные стандарты стран СНГ (ГОСТ), введенные в действие до 1 июля 2003 г.;

правила стандартизации, нормы и рекомендации в области стандартизации;

стандарты организаций;

общероссийские классификаторы технико-экономической и социальной информации.

При разработке национальных стандартов как основу используют международные стандарты ИСО (международной организации по стандартизации), МЭК (международной электротехнической комиссии) и др., за исключением случаев, когда такое применение признано по тем или иным причинам невозможным.

Большинство стандартов на строительные изделия и материалы – это стандарты технических требований и стандарты на методы испытаний. Стандарты технических требований нормируют показатели качества, надежности и долговечности продукции, ее внешний вид.

Кроме стандартов в строительстве действует система нормативных документов, объединяемая в «Строительные нормы и правила» (СНиП) и «Свод правил» (СП), которые представляют собой свод норм и правил по проектированию, строительству и производству строительных материалов, изделий и конструкций, а также зданий и сооружений.

Для повышения качества продукции, конкурентоспособности продукции, работ и услуг на российском и международном рынках осуществляется удостоверение соответствия продукции, процессов производства и иных объектов технического регулирования техническим регламентам, стандартам и условиям договора.

Добровольное подтверждение соответствияосуществляется в форме добровольной сертификации − установления соответствия национальным стандартам, стандартам организаций и условиям договора.

Обязательное подтверждение соответствияосуществляется в формах декларирования о соответствии и обязательной сертификации − установления соответствия техническим регламентам.

При проектировании, изготовлении строительных изделий и конструкций, возведении сооружений пользуются единой модульной координацией размеров в строительстве (МКРС) на базе основного модуля, равного 100 мм (1М). На практике используют как укрупненные модули (60М, 30М и др.) – при проектировании зданий, так и дробные (1/2М, 1/5М, 1/10М и др.) – при изготовлении строительных элементов.

 

1. ОСНОВЫ СТРОИТЕЛЬНОГО МАТЕРИАЛОВЕДЕНИЯ

1.1. Состав строительных материалов

Строительные материалы характеризуются химическим, минеральным и фазовым составами.

Химический состав строительных материалов определяет деление их на органические (древесные, битум, пластмассы и т.п.), минеральные (бетон, цемент, кирпич, природный камень и т.п.) и металлы (сталь, чугун, алюминий). Химический состав позволяет судить о других технических характеристиках (биостойкость, прочность и т.п.). Химический состав некоторых материалов (неорганические вяжущие, каменные материалы) часто выражают количеством содержащихся в них оксидов. Оксиды, химически связанные между собой, образуют минералы, которые определяют минеральный состав материала.

Минеральный составпоказывает, какие минералы и в каком количестве содержатся в материале. Этот состав непосредственно определяет свойства материала. Например, большее содержание в портландцементе такого минерала, как алит, ускоряет твердение, повышает прочность цементного камня.

Фазовый состав (по агрегатному состоянию) пористого материала характеризует количество твердого вещества (твердой фазы), образующего стенки пор («каркас» материала), и пор, заполненных воздухом (газовой фазой) и (или) водой (жидкой фазой). Соотношение между указанными фазами определяет баланс внутренних сил взаимодействия структурных элементов и во многом свойства материала.

рен1.2. Структура строительных материалов

Под структурой или строением материалов как физических тел понимают пространственное расположение частиц разной степени дисперсности и других структурных элементов с совокупностью устойчивых взаимных связей и порядком сцепления их между собой. Кроме того, в понятие структуры входит расположение пор, капилляров, поверхностей раздела фаз, микротрещин и других элементов. В зависимости от уровня изучения структуры выделяют макро- и микроструктуру, а также внут нее строение вещества, составляющее материал на молекулярном уровне.

Макроструктура материала – строение, видимое невооруженным глазом или при небольшом увеличении. Различают следующие типы макроструктуры.

Плотную однородную структуру имеют металлы, стекло и т.п.

Конгломератное строение характерно для большинства природных и искусственных каменных материалов (различных видов бетона, растворов, силикатного кирпича, некоторых видов керамических материалов), когда отдельные зерна заполнителя прочно соединены между собой прослойками вяжущего вещества. При этом в зависимости от относительного содержания этих основных элементов твердой фазы материала различают порфировый, контактный и законтактный типы структур. Порфировой принято называть структуру, в которой зерна заполнителя разделены толстыми прослойками вяжущего, и для них характерно «плавающее» расположение в материале. Если зерна или частицы контактируют через тонкие прослойки вяжущего при сохранении ее непрерывности и сплошности, то такую структуру называют контактной. При непосредственном контакте дискретных элементов, когда вяжущего вещества недостаточно для сохранения своей непрерывности и сплошности, говорят о законтактной структуре.

Большинство строительных материалов имеют в своей структуре поры. Мелкопористая структура характерна для керамических фаянсовых материалов, пеностекла, а также некоторых бетонов с поризованным цементным камнем.

Ячеистая структура характеризуется наличием макропор в материале, свойственна газо- и пенобетонам, ячеистым пластмассам.

Волокнистую и слоистую структуры имеют материалы, у которых волокна (слои) расположены параллельно одно другому. Такая структура присуща древесине, изделиям из минеральной ваты.

Рыхлозернистую структуру образуют отдельные, не связанные одно с другим зерна (песок, гравий, порошкообразные материалы).

Микроструктура материала – строение, видимое в оптический микроскоп. На микроуровне твердая фаза материала может быть кристаллической и аморфной. Неодинаковое строение кристаллических и аморфных веществ определяет и различие в их свойствах. Аморфные обладают нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические того же состава (аморфные формы кремнезема – пемза, туфы, трепелы, диатомиты). Теплопроводность аморфных материалов ниже, чем кристаллических. Неодинаковые свойства могут наблюдаться у кристаллических материалов одного и того же состава, если они формируются в разных кристаллических формах, называемых модификациями. Изменением свойств материала путем преобразования кристаллической решетки пользуются при термической обработке металлов.

Внутреннее строение веществ изучают методами рентгеноструктурного анализа, электронной микроскопии и т. д. Под внутренним строением вещества подразумеваются расположение, взаимоотношение и взаимосвязь различных по размеру атомов, ионов и молекул, из совокупности которых слагаются различные вещества в твердом, жидком и газообразном состояниях. Атомно-молекулярное строение определяет микроскопические особенности материала.

Структура материала не остается неизменной, "застывшей". В пространстве и во времени она непрерывно претерпевает изменения. Этому, в частности, способствуют постоянное движение элементарных частиц, атомов, молекул, взаимодействие материала с окружающей средой. Почти все строительные материалы и их сырьевые смеси, по крайней мере на микроуровне, представляют собой дисперсные системы, т.е. микрогетерогенные системы, состоящие из двух или более фаз. Интервал размеров частиц дисперсной фазы обычно составляет от нескольких нанометров до ~ 100 мкм. Характер структуры материала как дисперсной системы во многом определяется характером и величиной связей или сил сцепления между структурными элементами. В зависимости от характера этих связей в дисперсных системах выделяют прочные фазовые контакты в конденсационных (сращивание за счет химических взаимодействий аморфных частиц) или кристаллизационных (сращивание за счет химических взаимодействий частиц в виде кристаллов) структурах дисперсных материалов, непосредственные атомные контакты в сухих порошках и сравнительно слабые силы молекулярного взаимодействия (Ван-дер-Ваальсовые), действующие между частицами через прослойки жидкой фазы, в коагуляционных структурах. Особенность структур второго и третьего видов – полная их обратимость по прочности. Конденсационные и особенно кристаллизационные структуры придают веществу повышенную прочность, хрупкость. Во многих случаях возможно сосуществование всех указанных видов структур. Например, при затворении цемента водой атомные (непосредственные) контакты переходят в коагуляционные, затем в фазовые. Этому переходу соответствует непрерывное изменение вязкости, модуля упругости и, главное, прочности дисперсных структур.

Помимо рассмотренных выше видов взаимодействий и соответствующих структур необходимо выделить такие важные взаимодействия, как капиллярные, проявляющиеся в трехфазных (твердое – жидкость – газ) дисперсных системах, к которым относятся подавляющее большинство сырьевых (бетонных, растворных, силикатных и т.п.) смесей для изготовления строительных материалов. На рис.1 показано искривление жидкости в зазоре между двумя частицами шарообразной формы, а также между шарообразной частицей и плоскостью, приводящее к их стягиванию в результате растяжения жидкости и появления в ней отрицательного капиллярного давления (основная составляющая силы капиллярного сцепления). Преобладание капиллярных сил над другими составляющими межчастичного взаимодействия особенно заметно для частиц размером более 10 мкм и вплоть до 1-2 мм. Именно действием сил капиллярного сцепления объясняются экстремальные зависимости насыпного объема, уплотняемости сырьевых смесей, а также прочности свежесформованных изделий. Капиллярное сцепление проявляется также в капиллярно-пористых телах, структурные элементы которых в основном соединены другими связями некапиллярного характера. В этих телах силы капиллярного сцепления создают внутренние напряжения, вызывающие усадочные деформации, а также влияют на прочность материала.

Подобно тому, как образуются конденсационные или коагуляционные структуры, под действием сил капиллярного сцепления возникают капиллярные структуры в сырьевых смесях (рис.2), которые затем накладывают свой отпечаток на строение и свойства материалов, полученных из этих смесей.

В полидисперсных трехфазных системах появление капиллярных менисков и возникновение сил капиллярного сцепления между тонкодисперсными и грубодисперсными частицами приводит к прилипанию тонкодисперсных частиц к грубодисперсным с образованием агрегатов-глобул. В сырьевых смесях в результате процессов капиллярного структурообразования и наиболее важного из них – глобулирования, концентрация вяжущего у поверхности заполнителей и в контактных зонах между ними выше средней концентрации в смеси. В этом одна из причин увеличения прочности и плотности материалов в указанных зонах. Более полное использование гидратационной и связующей активности вяжущего в прессованных строительных композитах (силикатный и бетонный кирпич полусухого прессования и т.п.) достигается на стадии приготовления сырьевых смесей при влажности, соответствующей их максимальному глобулированию. В этом случае жидкая фаза играет роль усиливающего компонента, упрочняя материал за счет перевода матричного цементирующего вещества из объемного состояния в пленочное с более высокими прочностью и структурированностью.

а б

 

           
 
 
   
 
   
Рис.2. Капиллярные структуры в дисперсных системах: а – трехфазная гранула; б – трехфазная глобула; в – ячеисто-глобулярная структура; г – двухфазная гранула    

 

 



Если для дисперсных систем и материалов определяющими являются контактные взаимодействия, характер и величина которых обусловливают соответствующий тип структуры (эффект поверхностей), то для грубозернистых заполнителей наибольшее значение имеют закономерности укладки в зависимости от размеров и формы зерен (эффект масс). Заполнители подбирают из условия обеспечения наименьшего объема межзерновых пустот, что позволяет экономить на расходе вяжущего вещества. С этой целью заполнители предварительно разделяют на фракции по размерам с тем, чтобы затем пробным подбором или расчетом найти содержание каждой фракции для получения их плотной смеси.

Свойства материалов связаны с особенностями их строения и свойствами тех веществ, из которых данный материал построен. В свою очередь строение материала зависит: для природных материалов – от их происхождения и условий образования, для искусственных – от технологии производства и обработки материала.