Понятие величины, свойства однородных величин
Этапы исторического развития способов измерения величин. Происхождение названий единиц измерения величин
1. Сравнение величин путем приложения предметов друг к другу.
2. Сравнение величин с помощью предмета-посредника (условной мерки).
3. Сравнение и измерение величин с помощью частей тела (локоть, ладонь).
4. Сравнение и измерение величин с помощью универсальных общепринятых условных мерок:
- чарка, штоф, бочка (для объемов),
- локоть, сажень, аршин (для расстояний),
- пуд, лот, фунт (для масс).
5. Введение метрической системы. Предложена в конце 18 в. учеными в Париже. Эта система мер принята не во всех странах. В СССР она использовалась с 1917 года. За основу измерения был принят метр (в пер. с греческого «измеряю»), величина которого равна приблизительно
1/40 000 000 части Гринвичского меридиана. Все остальные единицы измерения величин связаны с метром. Так 1 кг равен массе 1 дм3 дистиллированной воды, 1 л равен объему этой же воды. Все остальные единицы измерения в 10n раз больше или меньше основных (мм, дм, км, г, мг, мл и т.п.).
Величина - одно из математических понятий, которое является обобщением более конкретных понятий: длины, объема, массы и т.д. Понятие величины связано со способами сравнения определенных свойств предметов. Однородными называются такие величины, которые имеют одинаковые единицы измерения.
Свойства однородных величин:
1) для двух величин одного рода справедливо только одно из высказываний: х=у или х<у, или х>у;
2) Отношение «быть большим по величине» ( х>у) является отношением порядка. Например, отношение «быть тяжелее» на множестве всех яблок является антирефлексивным (любое из яблок не тяжелее самого себя), антисимметричным (если яблоко х тяжелее яблока у, то яблоко у не тяжелее яблока х), транзитивным (если яблоко х тяжелее яблока у и яблоко у тяжелее яблока z, то яблоко х тяжелее яблока z);
3) отношение «быть одинаковым по величине» (х=у) является отношением эквивалентности. Например, «быть одинаковым по массе» на множестве всех яблок рефлексивно (каждое яблоко одинаково по массе с самим собой), симметрично (если яблоко х одинаково по массе с яблоком у, то яблоко у одинаково по массе с яблоком х), транзитивно (если яблоко х одинаково по массе с яблоком у и яблоко у одинаково по массе с яблоком z, то яблоко х одинаково по массе с яблоком z);
4) однородные величины можно складывать. Сложение величин обладает следующими свойствами:
а) переместительности, т.е. х+у=у+х,
б) сочетательности, т.е. x+(y+z)=(x+y)+z,
в) монотонности, т.е. х<х+у;
5) если х<у, то существует величина z, такая, что x+z=y. Величина z=y-x называется разностью между величинами у и х;
6) всякую величину х можно делить на любое число n одинаковых частей;
7) для любых величин х и у всегда найдется такое число n, что х<nу;
8) рассмотрим две бесконечные последовательности однородных величин. Первая а1, а2, ..., аn, ... - возрастающая, а вторая в1, в2, ..., вn, ... - убывающая. Пусть любая величина первой последовательности меньше любой величины второй последовательности. И чем больше номер члена каждой последовательности, тем больше они приближаются друг к другу. При этих условиях существует единственная величина х, которая больше всех членов первой последовательности и меньше всех членов второй последовательности, т.е.ai <вi.
Эти свойства характеризуют любую величину, т.е. определяют общее понятие величины.