АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВ

Систематические исследования аминокислотного состава белков были начаты во второй половине девятнадцатого века, когда были разработаны химические методы определения аминокислот в белковых гидролизатах. Однако значительные успехи в аминокислотном анализе полипептидов были достигнуты после разработки хроматографических методов изучения органических веществ. В современных исследованиях для определения аминокислотного состава белков применяется метод ионообменной хроматографии с использованием аминокислотных анализаторов, которые в автоматическом режиме разделяют смесь аминокислот, полученных в результате гидролиза белков, на ионообменнике, производят их окрашивание и измерение оптической плотности окрашенного раствора, после чего данные спектрофото-метрических измерений выводятся на регистрирующее устройство.

Гидролиз белков проводится в кислой или щелочной среде, а также с помощью протеолитических ферментов. В ходе гидролиза пептидные связи, соединяющие аминокислотные остатки в белке, расщепляются и образуется смесь свободных аминокислот.

Как показали исследования, белки разных видов растений, а также разных органов одного и того же растения могут заметно различаться по содержанию аминокислот (табл. 3 и 4).

В альбуминах по сравнению с проламинами существенно выше концентрация аргинина, глицина, лизина, метионина и триптофана, но значительно меньше содержание лейцина, пролина, тирозина, фенил-аланина.

В специфическом белке эндосперма пшеницы - пуротионине пол-ностью отсутствуют гистидин, метионин и триптофан, но повышено со-держание лизина (15%) и аргинина (18%).

Белки зерна зернобобовых и семян масличных культур по амино-кислотному составу близки к глобулинам, так как на 60-70% состоят из

3. Средний аминокислотный состав белков

некоторых растительных продуктов (%)* .

Аминокислоты   Зерно мягкой пшеницы Зерно обычной кукурузы Зерно высо- колизиновой кукурузы Листья клевера Казеин Молока

Аланин 3,8 8,0 5,9 6,5 3,5

Аргинин 4,4 4,3 4,3 6,5 4,0

Аспарагиновая кислота 5,3 6,0 8,4 10,0 7,2

Валин 4,5 4,4 4,5 5,3 6,2

Гистидин 2,4 2,3 3,0 2,5 3,2

Глицин 4,1 3,2 3,4 5,4 1,9

Глутаминовая кислота 30,4 23,8 21,3 11,5 15,0

Изолейцин 2,9 2,6 2,8 5,3 6,6

Лейцин 7,2 11,9 11,7 8,9 9,9

Лизин 2,8 2,4 3,3 6,2 6,6

Метионин 1,4 2,1 2,7 1,7 2,4

Пролин 10,7 9,5 6,2 5,1 8,6

Серин 4,2 4,3 4,0 4,6 5,9

Тирозин 2,6 3,1 3,4 4,0 5,1

Треонин 2,8 3,2 3,6 5,4 4,6

Триптофан 1,4 0.6 1,0 1,6 1,4

Фенилаланин 4,3 4,1 5,8 6,8 4,9

Цистин (цистеин) 2,2 2,3 2,5 0,9 0,8

________________________________________________________________

*Вследствие потерь при гидролизе выход аминокислот не равен 100%.

 

этих белков. Аминокислотный состав белков клубней картофеля, корне-плодов, овощей, плодов и ягод, вегетативной массы растений довольно близок к альбуминам и глобулинам, поскольку эти белки составляют 65-75% общей массы белков указанных растительных продуктов.

Растительные белки - источники незаменимых аминокислот для человека и сельскохозяйственных животных, так как являются основными компонентами пищи или корма. Под действием пищеварительных фер-ментов белки корма гидролизуются до аминокислот, которые затем по-ступают в кровь и используются для синтеза белков организма животных.

Потребность животного организма в незаменимых аминокислотах определяется средним аминокислотным составом синтезируемых белков и, кроме того, учитывается коэффициент использования каждой амино-кислоты, зависящий от химического состава корма, а также особенностей пищеварительной системы и обмена веществ организма данного вида животных. Этот показатель обычно выражают в г в расчете на 100 г белка корма и он выражает необходимую пропорцию аминокислот в кормовом белке.

Если содержание незаменимых аминокислот в кормовом белке точно соответствует установленной пропорции (то есть потребности), то все они

4. Аминокислотный состав очищенных растительных протеинов (%).

Аминокислоты Альбу- мин проса Глобу- лин ячменя Легу- мин сои Зеин куку- рузы Оризе- нин риса Эталон ФАО

Аланин 6,9 4,8 3,4 8,8 5,4

Аргинин 9,1 10,6 7,0 1,3 7,5

Аспарагиновая кислота 4,6 10,9 12,2 4,9 7,6

Валин 5,1 6,3 4,3 3,6 6,4 4,2

Гистидин 2,6 2,5 2,3 1,0 2,2

Глицин 6,3 5,5 3,6 1,1 4,1

Глутаминовая кислота 21,2 14,0 20,8 23,4 17,7

Изолейцин 3,1 3,3 5,1 3,3 5,8 4,2

Лейцин 6,0 6,5 6,3 18,6 9,3 4,8

Лизин 6,5 4,7 4,2 0,2 4,0 4,2

Метионин 1,7 1,1 1,3 0,9 1,9 2,2

Пролин 4,9 4,2 4,9 9,2 5,4

Серин 4,5 6,2 6,5 4,9 4,8

Тирозин 3,1 3,1 3,9 5,0 3,8

Треонин 4,6 5,1 4,5 2,8 4,1 2,8

Триптофан 1,5 1,1 1,4 0,1 1,2 1,4

Фенилаланин 3,3 4,5 4,9 6,9 5,6 2,8

Цистин (цистеин) 2,4 2,3 1,4 1,0 0,5

________________________________________________________________

 

полностью используются для синтеза белков животного организма и такой кормовой белок называют полноценным. Если же в кормовом белке хотя бы одной аминокислоты содержится недостаточно, то она будет лимитировать синтез белков в животном организме и для образования определённой массы животного белка потребуется восполнять недостаток этой аминокислоты добавлением дополнительного количества корма, что вызы-вает перерасход корма и увеличение затрат на создание одной единицы животноводческой продукции. Кроме того, другие аминокислоты в таких условиях оказываются в избытке и должны превращаться в организме в другие органические вещества. Кормовые белки с низким содержанием незаменимых аминокислот принято называть неполноценными белками.

По средним нормам питания человеку необходимо потреблять 8-10 г полноценного белка в расчете на 1 МДж обменной энергии, содержащейся в пище, коровам - 8-12 г, свиньям - 10-14 г, птице - 12-15 г. (Обменная энергия - часть общей энергии, доступная для использования в процессе обмена веществ организма).

Для каждого вида организмов с учетом их возраста и физиологи-ческого состояния определены оптимальные нормы содержания незаме-нимых аминокислот в кормовых белках. Наиболее часто в качестве эталона полноценных пищевых и кормовых белков используются нормативы, разработанные экспертами Продовольственной и сельскохозяйственной организации ООН (ФАО) и Всемирной организации здравоохранения (ВОЗ). В таблице 4 приведен эталон аминокислотной шкалы, рекомендуемый ФАО/ВОЗ для кормовых белков при кормлении крупного рогатого скота. Пищевая биологическая ценность такого белка принимается за 100%, а другие белки в опытах или с помощью расчетов сравнивают с эталоном.

Более высокую биологическую ценность имеют белки животного происхождения: белок яйца и казеин молока - 100%, белки мяса и рыбы - 95%. Из растительных белков наиболее полноценными являются альбу-мины, их биологическая ценность составляет 85-95%. В альбуминах имеется некоторый дефицит по содержанию метионина и изолейцина. Биологическая ценность глобулинов составляет 80-90%, в них имеется значительный дефицит по метионину и меньший - по изолейцину и триптофану. Последнее не относится к глобулинам сои, в которых отмечается лишь некоторый недостаток метионина.

Биологическая ценность глютелинов - 70-80%, в них понижена кон-центрация триптофана, метионина и лизина. Меньший дефицит по указанным аминокислотам имеют оризенины, у которых биологическая ценность составляет около 90%. К неполноценным белкам относятся проламины, имеющие биологическую ценность 40-50%. В этих белках очень мало содержится триптофана, лизина и метионина и понижена концентрация валина и изолейцина.

Проламины - специфические белки зерна злаковых растений, поэтому у них суммарный белок зерновок так же, как и проламины, имеет довольно низкую биологическую ценность: белок зерна кукурузы - 52-58%, пшеницы, ячменя и проса - 60-70%, ржи и овса - 70-75%. Суммарные белки зерна зернобобовых и семян масличных культур, клубней картофеля, корнеплодов, овощей, плодов и ягод, а также вегетативной массы кормовых трав и других растений вследствие повышенной концентрации глобулинов и альбуминов характеризуются довольно высокой биологической ценностью - 80-90%.

Для оценки биологической ценности белков очень часто используют показатель - индекс незаменимых аминокислот, который рассчитывают по формуле:

где числитель - содержание незаменимых аминокислот в оцениваемом белке, знаменатель - содержание тех же аминокислот в эталонном белке (по ФАО/ВОЗ), n - число аминокислот, 100 - пересчет в проценты.

Указанный способ определения биологической ценности белков удобен тем, что позволяет использовать данные аминокислотного анализа.

Более точные результаты по оценке биологической ценности белков дают методы, основанные на использовании живых организмов. Одним из таких методов является расчет показателя "эффективность белка", который выражается отношением привеса животных к массе потреблённого кормового белка. В этом случае оценка биологической ценности белка производится по интенсивности роста опытных животных.

Для взрослых животных биологическую ценность белка корма оп-ределяют по методу Томаса и Митчелла, который основан на учете отно-шения азота корма, отложенного в теле животного, к общему количеству переваренного азота.

Если содержание белков в растительной массе, используемой для кормления животных, ниже, чем требуется по нормам кормления, то во избежание перерасхода корма и повышения себестоимости животновод-ческой продукции количество белка в корме балансируют путем введения белковых добавок с повышеным содержанием незаменимых аминокислот. По такому же принципу контролируется содержание в кормовом белке незаменимых аминокислот, недостающее до нормы количество какой-либо аминокислоты балансируют добавлением в корм чистых препаратов дефицитных аминокислот или белковой массы с более высоким содер-жанием данной аминокислоты по сравнению с принятым эталоном.

В нашей стране и за рубежом разрабатываются и реализуются научные программы, связанные с созданием новых генотипов растений, отлича-ющихся повышенным содержанием белков с улучшенным аминокислотным составом. Примером тому может служить создание высоколизиновых гибридов кукурузы, у которых уровень урожайности примерно такой же, как и у обычных гибридов, однако в их зерновках накапливается больше белков с повы-шенным содержанием лизина (на 50-80%) и триптофана (на 30-50%).

Высоколизиновые гибриды кукурузы получены от скрещивания обычной кукурузы с генотипами, имеющими гены Опейк-2 и Флаури-2, которые вызывают изменение состава белков зерна: массовая доля спир-торастворимых белков-зеинов, имеющих низкую биологическую ценность, снижается в 2,5-3 раза, а доля других белков (альбуминов, глобулинов и глютелинов) возрастает. В результате таких изменений белкового комплекса зерна биологическая ценность суммарного белка зерна значительно повышается. Использование зерна высоколизиновой кукурузы для кормления животных позволяет существенно повысить их продуктивность и сократить затраты кормового белка на создание одной единицы животноводческой продукции на 20-25%.

Во многих лабораториях проводится селекционно-генетическая работа по улучшению аминокислотного состава белков зерна ячменя на основе скрещиваний с высоколизиновыми формами Хайпроли и Ризо 1508, а также поиск генетических источников высокого содержания белков с улучшенным аминокислотным составом для пшеницы, проса, тритикале и других злаковых культур.

Определенные надежды возлагают на новые методы создания ценных генотипов растений, основанные на использовании достижений гене-тической и клеточной инженерии. Так, например, путем направленного мутагенеза в ген спирторастворимого белка зерна кукурузы α-зеина введены дополнительные кодоны лизина и в результате включения такого модифицированного гена в генотип кукурузы были получены линии с повышенным содержанием лизина в белках зерна.

В 1986 г. Дж.М.Джейнс с помощью ферментов синтезировал ген, кодирующий структуру белка с высокой концентрацией незаменимых аминокислот (80%). В настоящее время разрабатываются способы вве-дения этого гена в генотипы злаковых растений.

Вопросы для повторения:

1. Каковы основные характеристики моноаминомонокарбоновых, моноаминодикарбоновых и диаминомонокарбоновых кислот? 2. Какие стереоизомеры аминокислот синтезируются в живых организмах? 3. В чём состоят структурные и биологические особенности протеино­генных аминокислот? 4. Что выражает понятие "незаменимые амино­кислоты"? 5. В виде каких форм находятся аминокислоты в растворе и как они взаимо-действуют с кислотами, основаниями, азотистой кислотой, формальдегидом? 6. Какие образуются продукгы при взаимо­действии аминокислот с редуцирующими сахарами и кислородом воздуха и как они влияют на товарные свойства растительной продукции? 7. В зависимости от каких факторов изменяется концентра­ция аминокислот в растительных тканях? 8. Из каких структурных компонентов состоят ри-бонуклеотиды и дезоксирибонуклеотиды? 9. Какие конформации молекул имеют разные нуклеотиды? 10. Как образуются нуклеозиды и их фосфорнокислые эфиры? 11. Каковы химические свойства нуклеотидов и какие они выполняют биологические функции? 12. Как называют нуклеотиды и их ди- и трифосфаты? 13. Каковы структурные особенности пуриновых и пиримидиновых оснований, входящих в состав нуклеотидов? 14. Каковы функции белков в живых организмах и сколько их содержится в различных растительных продуктах? 15. В чём состоят основные положения полипептидной теории стоения белков? 16. Чем отличаются белки от пептидов? 4. Какие имеются сведения о первичной структуре белков? 17. Как формируется вторичная, третичная и четвертичная структура белков? 18. В чём состоят особенности структуры олигомерных белков? 19. Чем отличаются нативная и денатурированная конформации белковых молекул? 20. Какие известны катализаторы формирования пространственной структуры полипеп-тидов? 21. Как происходит денатурация белков? 22. Как определяются размеры и форма белковых молекул и какие имеются сведения об этих показателях? 23.Какие применяются методы изучения физико-химических свойств белков? 24. Какие принципы положены в основу классификации белков и какие известны разновидности белковых групп в соответствии с современной классификацией? 25. Как определяют аминокислотный состав белков? 26. Как различаются растительные белки по содержанию аминокислот? 27. Как определяют биологическую полноценность белков? 28. Какие имеются сведения о биологической ценности растительных белков? 29. Какие разрабатываются методы создания генотипов растений с повышенным содержанием незаменимых аминокислот в белках?