Розділ 14. Різницеві оператори.

Основной инструмент проектирования цифровых фильтров – частотный (спектральный) анализ. Частотный анализ базируется на использовании периодических функций синусов и косинусов. По-существу, спектральная характеристика цифрового фильтра – это тонкая внутренняя структура системы, его однозначный функциональный паспорт направленного изменения частотного состава данных, полностью определяющий сущность преобразования фильтром входных данных.

Рассмотрим примеры синтеза и частотного анализа фильтров применительно к известным способам дифференцирования и интегрирования данных.

Рассмотрим примеры частотного подхода при анализе разностных операторов.

Разностный оператор 1-го порядка имеет вид:

Dsk = sk+1-sk.

Последовательное n-кратное применение оператора записывается в виде оператора n-го порядка:

Dn(sk) = D[Dn-1(sk)] = Dsk ③ Dn-1(sk) (4.1.1)

k sk D(sk) D2(sk) D3(sk) D4(sk) D5(sk) D6(sk)
-7 -6 -5 -4 -3 -2 -1 -1 -2 -3 -1 -4 -4 -5 -10 -1 -6 -20 -6
Кq  

Выходные значения импульсной реакции разностных операторов на единичный импульсный сигнал Кронекера приведены в таблице. Ряды последовательных разностей содержат знакопеременные биномиальные коэффициенты. В представленной форме разностные операторы являются каузальными фазосдвигающими (односторонними) фильтрами, но нетрудно заметить, что операторы четных степеней могут быть переведены в симметричную форму сдвигом влево на половину окна оператора.

В последней строке таблицы приводятся коэффициенты усиления дисперсии шумов, значение которых резко нарастает по мере увеличения порядка оператора. Это позволяет использовать разностные операторы с порядком выше 1 для определения местоположения статистически распределенных шумов в массивах данных. Особенно наглядно эту возможность можно видеть на частотных характеристиках операторов.

Подставляя сигнал s(k) = exp(jwk) в (4.1.1) и упрощая, получаем:

Dns(k) = (jn) exp(jwn/2) [2 sin(w/2)]n exp(jwk).

H(w) = (jn) exp(jwn/2) [2 sin(w /2)]n (4.1.2)

Так как модуль первых двух множителей в выражении (4.1.2) равен 1, зависимость коэффициента передачи разностного оператора от частоты определяется вторым сомножителем (2 sin(w/2))n и представлена на рисунке 4.1.1.

Рис. 4.1.1. Разностные фильтры.

Выделение в сигналах шумов. Как следует из рисунка, разностные операторы подавляют постоянную составляющую сигнала и его гармоники в первой трети интервала Найквиста и увеличивают высокочастотные составляющие сигнала в остальной части интервала тем больше, чем больше порядок оператора. Как правило, эту часть главного интервала спектра сигналов занимают высокочастотные статистические шумы.

Шумы при анализе данных также могут представлять собой определенную информацию, например, по стабильности условий измерений и по влиянию на измерения внешних дестабилизирующих факторов. На рис. 4.1.2 приведен пример выделения интервалов интенсивных шумов в данных акустического каротажа, что может свидетельствовать о сильной трещиноватости пород на этих интервалах. Такая информация относится уже не шумовой, а к весьма полезной информации при поисках и разведке нефти, газа и воды.

Рис. 4.1.2.

Восстановление утраченных данных. Разностные операторы имеют одну особенность: оператор n+1 порядка аннулирует полином степени n, т.е. свертка оператора порядка n+1 с полиномом n-ой степени дает нулевые значения: Dn+1 ③ Pn(k) = 0. Эту особенность можно использовать для создания очень простых и достаточно надежных операторов восстановления в массивах пропущенных и утраченных значений или для замены аннулированных при обработке величин (например, явных выбросов).

Пример.P2(k) = xk = 1+2k-k2, k = 0,1,2,... xk = 1,2,1,-2,-7,-14,-23,-34,... yk = xk ③ D3=0,0,0,0,...

Если считать, что отрезок данных, содержащий пропуск, является многочленом некоторой степени, то свертка данных с разностным оператором следующего порядка должна быть равна нулю. Так, при аппроксимации данных многочленом третьей степени для любой точки массива должно выполняться равенство:

D4③(sk) = sk-2-4sk-1+6sk-4sk+1+sk+2 = 0.

Интерполяционный фильтр восстановления утраченной центральной точки данных:

sk = (-sk-2+4sk-1+4sk+1-sk+2)/6. (4.1.3)

Соответственно, оператор фильтра восстановления данных h(n) = (-1,4,0,4,-1)/6. Коэффициент усиления шумов s2 = 17/18 = 0.944.

Пример.Фактический отрезок массива данных: xk = {3,6,8,8,7,5,3,1}.

Допустим, что на отрезке был зарегистрирован явный выброс: xk = {3,6,8,208,7,5,3,1}.

Отсчет с выбросом аннулирован. Замена отсчета: x3 = (-x1+4x2+4x4-x5)/6= (-6+32+28-5)/6 » 8.17.

В массиве утрачен 5-й отсчет. Восстановление: x4 = (-x2+4x3+4x5-x6)/6 = (-8+32+20-3)/6 » 6.83.

Рис. 4.1.3. Разностные фильтры.

Принимая в (4.1.3) k = 0 и подставляя сигнал sk = exp(jwk), получаем частотную характеристику, в данном случае - фильтра восстановления данных 4-го порядка:

H(w) = (4 cos w - cos 2w)/3.

Вид частотной характеристики для фильтров восстановления пропущенных данных 4-го и 6-го порядков приведен на рис. 4.1.3. Графики наглядно показывают, что применение разностных интерполяционных фильтров восстановления данных возможно только для сигналов, высокочастотные и шумовые составляющие которых минимум в три раза меньше частоты Найквиста. Интерполяционные фильтры выше 4-го порядка применять не рекомендуется, т.к. они имеют коэффициент усиления шумов более 1.

На рис. 4.1.4 – 4.1.6 приведены примеры восстановления утраченных данных во входных сигналах оператором 3-го порядка и спектры сигналов в сопоставлении с передаточной функцией оператора восстановления данных.

Рис. 4.1.4. Восстановление незашумленных данных. Рис.4.1.5. Спектры.

Рис. 4.1.6. Восстановление зашумленных данных.

В сигналах, представленных на рисунках, утрачен каждый 10-ый отсчет (например, при передаче данных) при сохранении тактовой частоты нумерации данных. Учитывая, что все значения входных сигналов положительны, индикатором пропуска данных для работы оператора служат нулевые значения. В любых других случаях для оператора восстановления данных необходимо предусматривать специальный маркер (например, заменять аннулированные данные или выбросы определенным большим или малым значением отсчетов).

Рис. 4.1.7. Погрешности восстановления сигналов.

Как следует из рис. 4.1.5, спектр полезного сигнала полностью находится в зоне единичного коэффициента частотной характеристики оператора, и восстановление данных выполняется практически без погрешности (рис. 4.1.4). При наложении на сигнал статистически распределенных шумов (рис. 4.1.6) погрешность восстановления данных увеличивается, но для информационной части полного сигнала она, как и во входных данных, не превышает среднеквадратического значения (стандарта) флюктуаций шума. Об этом свидетельствует рис. 4.1.7, полученный для сигналов на рис. 4.1.6 по данным математического моделирования при разных значениях стандарта шума (выборки по 10 точкам восстановления).

Аппроксимация производных - вторая большая область применения разностных операторов. Оценки первой, второй и третьей производной можно производить по простейшим формулам дифференцирования:

(sn)' = (sn+1-sn-1)/2Dt. h1 = {-0.5, 0, 0.5}. (4.1.4)

(sn)'' = (sn+1-2sn+sn-1)/Dt. h2 = {1, -2, 1}.

(sn)''' = (-sn+2+2sn+1-2sn-1+sn-2)/2Dt. h3 = {0.5, -1, 0, 1, -0.5}.

Оператор первой производной является нечетной функцией и имеет мнимый спектр. Если принять s(t) = exp(jwt), то истинное значение первой производной должно быть равно: s'(t) = jw exp(jwt). Передаточная функция H(w) = jw. Оценка первой производной в точке n = 0 по разностному оператору при Dt = 1: s'(0) = (exp(jw)-exp(-jw))/2 = j sin w = H1(w). Отношение расчетного значения к истинному на той же точке: K1(w) = sin(w)/w. Графики функций в правой половине главного диапазона приведены на рис. 4.1.8.

Рис. 4.1.8.

Как следует из приведенных выражений и графиков, значение К(w) равно 1 только на частоте w = 0. На всех других частотах в интервале Найквиста формула дает заниженные значения производных. Однако при обработке практических данных последний фактор может играть и положительную роль, если сигнал низкочастотный (не более 1/3 главного диапазона) и зарегистрирован на уровне высокочастотных шумов. Любое дифференцирование поднимает в спектре сигнала долю его высокочастотных составляющих. Коэффициент усиления дисперсии шумов разностным оператором дифференцирования непосредственно по его спектру в главном диапазоне:

Kq = (1/p)(sin w)2 dw = 0.5.

При точном дифференцировании по всему главному диапазону:

Kq = (1/p)w2 dw = 3.29

Следовательно, разностный оператор имеет практически в шесть раз меньший коэффициент усиления дисперсии шумов, чем полный по главному диапазону точный оператор дифференцирования.

На рис. 4.1.9 показан пример дифференцирования гармоники с частотой 0.1 частоты Найквиста (показана пунктиром) и этой же гармоники с наложенными шумами (сплошная тонкая кривая).

Рис. 4.1.9. Пример дифференцирования (входные сигналы – вверху, выходные – внизу).

Оператор второй производной относится к типу четных функций. Частотная функция оператора: H2(w) = -2(1-cos w). Собственное значение операции H(w) = -w2. Отношение фактического значения к собственному

K2(w) = [sin(w/2)/(w/2)]2,

и также равно 1 только на частоте w = 0. На всех других частотах в интервале Найквиста формула дает заниженные значения производных, хотя и меньшие по относительным значениям, чем оператор первой производной. Частотные графики функций приведены на рис. 4.1.10. Коэффициент усиления дисперсии шумов оператором второй производной равен 6 при собственном значении дифференцирования, равном 19.5. Эти значения показывают, что операция двойного дифференцирования может применяться только для данных, достаточно хорошо очищенных от шумов, с основной энергией сигнала в первой трети интервала Найквиста.

Рис. 4.1.10. Частотные функции 2-ой производной.

В принципе, вторую производную можно получать и последовательным двойным дифференцированием данных оператором первой производной. Однако для таких простых операторов эти две операции не тождественны. Оператор последовательного двойного дифференцирования можно получить сверткой оператора первой производной с самим собой:

2h1 = h1 ③ h1 = {0.25, 0, -0.5, 0, 0.25},

и имеет коэффициент усиления дисперсии шумов всего 0.375. Частотная характеристика оператора:

2H1(w) = -0.5[1-cos(2w)].

Графики 2H1(w) и коэффициента соответствия 2K1(w) приведены пунктиром на рис. 4.1.10. Из их сопоставления с графиками второй производной можно видеть, что последовательное двойное дифференцирование возможно только для данных, спектральный состав которых занимает не более пятой начальной части главного диапазона, и по точности хуже оператора второй производной.

Рис. 4.1.11. Вторая производная гармоники с частотой w=0.2p при Dt=1

(пунктир – двойное последовательное дифференцирование)

Пример применения двух операторов второй производной приведен на рис. 4.1.11.

Попутно заметим, что частота Найквиста главного диапазона обратно пропорциональна интервалу Dt дискретизации данных (wN = p/Dt), а, следовательно, интервал дискретизации данных для корректного использования простых операторов дифференцирования должен быть в 3-5 раз меньше оптимального для сигналов с известными предельными частотами спектрального состава.

Частотные функции для третьей производной предлагается получить самостоятельно.

 

Питання для самостійної роботи.