Для малой выборки доверительный интервал
Пример
При приемке сооружений комиссия в качестве одного из параметров замеряет их ширину. Согласно инструкции требуется выполнять измерений. Допускаемое отклонение параметра . Если предварительно вычисленное значение , то можно определить, с какой достоверностью комиссия оценивает данный параметр.
Из формулы (2.2) можно записать
.
В соответствии с табл.10.1 доверительная вероятность для .
Это низкая вероятность.
Погрешность, превышающая доверительный интервал , согласно выражению (1.4) будет встречаться один раз из , т.е. из четырех измерений. Это недопустимо.
В связи с этим необходимо вычислить минимальное количество измерений с доверительной вероятностью , равной и .
По формуле (2.2) имеем измерения при и измерения при , что значительно превышает установленные измерений.
Для нахождения границы доверительного интервала при малых значениях () применяют метод, предложенный в 1908 г. английским математиком Госсетом В.С. (псевдоним Стьюдент).
Кривые распределения Стьюдента в случае (практически при ) переходят в кривые нормального распределения (рис.10.1).
Рис.2.1. Кривые распределения Стьюдента для различных значений:
1 - при ; 2 - при ; 3 - при
, (2.3)
где - коэффициент Стьюдента, принимаемый по табл.1.2
в зависимости от значения доверительной вероятности .
Зная , можно вычислить действительное значение изучаемой величины для малой выборки
. (2.4)
Возможна и иная постановка задачи.
По известных измерений малой выборки необходимо определить доверительную вероятность при условии, что погрешность среднего значения не выйдет за пределы .
Задачу решают в такой последовательности:
1. Вначале вычисляется среднее значение , и .
2. С помощью величины , известного и табл.1.2 определяют доверительную вероятность.
В процессе обработки экспериментальных данных следует исключить грубые ошибки ряда. Появление этих ошибок вполне вероятно, а наличие их ощутимо влияет на результат измерений. Однако прежде чем исключить то или иное измерение, необходимо убедиться, что это действительно грубая ошибка, а не отклонение вследствие статистического разброса.
Известно несколько методов определения грубых ошибок статистического ряда. Наиболее простым способом исключения из ряда резко выделяющегося измерения является правило "трех сигм": разброс случайных величин от среднего значения не должен превышать
. (2.5)
Более достоверными являются методы, базируемые на использовании доверительного интервала.
Пусть имеется статистический ряд малой выборки, подчиняющийся закону нормального распределения. При наличии грубых ошибок критерии их появления вычисляются по формулам
; , (2.6)
где - наибольшее и наименьшее значения из измерений.
В табл.2.1 приведены максимальные значения , возникающие вследствие статистического разброса, в зависимости от доверительной вероятности.
Если , то значение необходимо исключить из статистического ряда как грубую погрешность.
Если исключается величина .
После исключения грубых ошибок определяют новые значения и из или измерений.
Таблица 2.1
Критерий появления грубых ошибок