Компонентный состав.
Среди углеводородных и неуглеводородных компонентов нефти содержатся так называемые реликтовые структуры или хемофоссилии, которые по своему составу близки к некоторым биологическим веществам или их фрагментам.
Раньше придавали большое значение оптической активности нефти. Это фундаментальное свойство, общее для живого вещества, продуктов его преобразования и нефти. Оно заключается в оптической асимметрии органических молекул: все биогенные аминокислоты — левые, а сахара — правые зеркальные изомеры. А при минеральном синтезе углеводородов возникают смеси, не обладающие оптической активностью. Но это доказательство не полное. Оптическую активность проявляет не вся нефть. Более надежное доказательство — наличие в нефти соединений, называемых биомаркерами. Биомаркеры — свойственные живому существу структуры, например изопреноидные углеводороды, порфирины, возникновение которых связано с хлорофиллом растений. То есть это такие компоненты, которые, безусловно, имеют органическое происхождение. И они в нефти есть. Но и здесь сторонники неорганического происхождения нефти находят контрдовод, говорят, что биомаркеры были вымыты из осадочных пород, когда через них проходила основная масса углеводородов, которая поступала из мантии, из глубоких недр. В целом ряде нефтей исследовали изотопный состав основных классов углеводородов. Это парафиновые, нафтеновые и ароматические. И одновременно извлекли и исследовали изотопный состав биомаркеров разного типа. Если биомаркеры попали в нефть случайно, они не будут по изотопному составу углерода коррелировать с остальными углеводородами нефти. Исследования показали, что углеводороды основной массы и биомаркеры для данной нефти имеют один источник. То есть получается, что биомаркеры не случайно попали в нефть, они родственны с другими углеводородами. А поскольку все согласны, что биомаркеры имеют органическое происхождение, то, таким образом, и вся соответствующая нефть имеет такое же происхождение.
Таблица 3. Компонентный состав нефти
Компонентный (групповой) состав (около 1300 химических соединений) | ||
Углеводородные (УВ) компоненты (более 900 химических соединений): алканы – от 10 до 70 %, цикланы – от 25 до 80 %, арены – от 10 до 25 %, иногда до 50 %, гибридные УВ – от 20 до 50 %, алкены (олефины) – иногда до 8-10 % | Неуглеводородные компоненты (около 370 химических соединений): сернистые соединения (более 250), кислородные соединения (более 70), азотистые соединения (более 50), смолы, асфальтены | |
Реликтовые соединения (хемофоссилии) | ||
Углеводородные структуры: нормальные и изопреноидные алканы; полициклические изопреноидные УВ (стераны, терпаны, гопаны) | Неуглеводородные структуры: металлопорфирины | |
В общем, в нефтях определено около 1300 индивидуальных химических соединений, которые разделяются на две группы: углеводородную, состоящую примерно из 900 индивидуальных УВ и неуглеводородную, состоящую примерно из 370 гетероорганических соединений. В обобщённом виде компонентный состав нефтей представлен в таблице 3.
Основными компонентами нефти являются углеводороды, которые представлены алкановыми, нафтеновыми, ароматическими и гибридными соединениями. В последнее время в некоторых нефтях обнаружены этиленовые УВ или алкены.
Алкановые УВ, они же метановые, парафиновые, алифатические УВ или алканы (Al) соответствуют общей формуле CnH2n+2, где n – количество атомов углерода, которое может изменяться от одного до нескольких десятков. Их содержание в нефтях составляет от 10 до 70 %.
Химическое строение простейших алканов – метана, этана и пропана – показывают их структурные формулы, из которых видно, что в алканах имеются два типа химических связей: С–С и С–Н. Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:
Пространственное строение зависит от направленности атомных орбиталей (АО). В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.
Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Каждая из четырех sp3-гибридных АО углерода образует -связи С-Н или С-С.
Четыре -связи углерода направлены в пространстве под углом 109о28', что соответствует наименьшему отталкиванию электронов. Поэтому молекула простейшего представителя алканов – метана СН4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:
Валентный угол Н-С-Н равен 109о28'. Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.
В молекуле следующего гомолога – этана С2Н6 – два тетраэдрических sp3-атома углерода образуют более сложную пространственную конструкцию:
Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы. Это можно показать на примере н-бутана или н-пентана:
Алканы кроме н-алканов содержат и изо-алканы. При этом среди изо-алканов выделяются изопреноидные алканы, метильные группы СН3, которых имеют регулярное чередование, что видно на примере пристана: (С19Н40):
СН3-СН-СН2-СН2-СН2-СН-СН2-СН2-СН2-СН-СН2-СН2-СН2-СН-СН3.
| | | |
СН3 СН3 СН3 СН3.
Пристан — природный насыщенный терпеноидный алкан, получаемый прежде всего из жира печени акул, от которых и произошло его название (лат. pristis — «акула»)
Если атом углерода в молекуле связан с четырьмя различными атомами или атомными группами, то возможно существование двух соединений с одинаковой структурной формулой, но отличающихся пространственным строением. Молекулы таких соединений относятся друг к другу как предмет и его зеркальное изображение и являются оптическими изомерами или оптическими антиподами:
Молекулы оптических изомеров несовместимы в пространстве (как левая и правая руки), в них отсутствует плоскость симметрии. Таким образом, оптическими изомерами называются пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение. Оптические изомеры имеют одинаковые физические и химические свойства, но различаются отношением к поляризованному свету. Такие изомеры обладают оптической активностью (один из них вращает плоскость поляризованного света влево, а другой - на такой же угол вправо). Различия в химических свойствах наблюдаются только в реакциях с оптически активными реагентами. Оптическая изомерия проявляется в органических веществах различных классов и играет очень важную роль в химии природных соединений.
Алканы, содержащие от одного до четырех атомов углерода (С1-С4), при нормальных условиях являются газами, от пяти до 15 (С5-С15) – жидкостями, больше 16 (С16) - твердыми веществами. При этом твердые алканы от С16-С32 называются парафинами, а от С32 и выше церезинами.
Алканы обладают сильным токсическим и наркотическим действием, особенно нормальные алканы с короткой углеродной цепью. Парафины и церезины нетоксичны, используются в парафинолечении.
Нафтеновые УВ, они же циклановые, циклоалкановые, циклопарафиновые, полиметиленовые УВ или нафтены (Nf)состоят из замкнутых в цикл метиленовых групп СН2.
Атомы углерода в циклоалканах, как и в алканах, находятся в sp3–гибридизованном состоянии и все их валентности полностью насыщены.
Простейший циклоалкан – циклопpопан С3Н6 – представляет собой плоский трехчленный карбоцикл:
Остальные циклы имеют неплоское строение вследствие стремления атомов углерода к образованию тетраэдрических валентных углов.
По правилам международной номенклатуры в циклоалканах главной считается цепь углеродных атомов, образующих цикл. Название строится по названию этой замкнутой цепи с добавлением приставки "цикло" (циклопропан, циклобутан, циклопентан, циклогексан и т.д.). При наличии в цикле заместителей нумерацию атомов углерода в кольце проводят так, чтобы ответвления получили возможно меньшие номера. Так, соединение
следует назвать 1,2-диметилциклобутан, а не 2,3-диметилциклобутан, или 3,4-диметилциклобутан.
Молекулы циклоалканов содержат на два атома водорода меньше, чем соответствующие алканы. Напpимеp, бутан имеет фоpмулу С4Н10, а циклобутан – С4Н8. Поэтому общая формула циклоалканов СnH2n. Структурные формулы циклоалканов обычно изображаются сокращенно в виде правильных многоугольников с числом углов, соответствующих числу атомов углерода в цикле.
Нафтены имеют моноциклическое би-, три- и полициклическое строение. В моноциклической молекуле может быть от трех до шести метиленовых групп.
Общая формула моноциклических нафтенов имеет вид: CnH2n, а би- и трициклических структур: CnH2n-2 и CnH2n-4 соответственно.
Нафтены, кроме моноциклических могут иметь неконденсированное и конденсированное строение. В неконденсированных структурах нафтеновые циклы отделены (изолированы) друг от друга метиленовыми группами (СН2), которых может быть несколько. Смежные структуры конденсированных нафтенов содержат два общих атома углерода и состоят из различных комбинаций пяти- и шестичленных циклов, которые часто содержат также ароматические кольца и алкильные цепи. Нафтены С3-С4 являются газами, С5-С7 жидкостями, С8 и выше – твердыми веществами.
Содержание нафтенов в нефтях колеблется в широких пределах, от 25 до 80 %.
Среди соединений нефти нафтены наименее токсичны и даже обладают стимулирующим действием на живые организмы. Бакинская нафталанская нефть.
[1] Хемофоссилии - (сокращение от химические ископаемые - в переводе с английского chemical fossils)