Продукционная модель.
Дата добавления: 2014-01-03; просмотров: 10; лекция была полезна: 0 студентам(у); не полезна: 0 студентам(у).
Опубликованный материал нарушает авторские права? сообщите нам...
Обучение и самообучение.
Специальное программное обеспечение.
В рамках этого направления разрабатываются специальные языки для решения задач не вычислительного плана. Эти языки ориентированы на символьную обработку информации. Помимо этого создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта.
Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление знаний на основе анализа и обобщения данных. Включает обучение по примерам (или индуктивное), а также традиционные подходы распознавания образов.
Вопрос №3. Модели предоставления знаний.
Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:
• продукционные;
• семантические сети;
• фреймы;
• формальные логические модели.
Продукционная модель,или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие).
Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием — действия, выполняемые при успешном исходе поиска.
При использовании продукционной модели база знаний состоит из набора правил. Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.