Подвижная станция

Функциональная схема системы сотовой связи и ее элементы

 

Система сотовой связи строится в виде совокупности ячеек, или сот, покрывающих обслуживаемую территорию, например территорию города с пригородами. Ячейки обычно схематически изображают в виде равновеликих правильных шестиугольников (рис.11.1), что по сходству с пчелиными сотами и послужило поводом назвать систему сотовой.

Рис.11.1. Ячейки (соты) систем, покрывающие обслуживаемую территорию
Рис.11.2. Одна ячейка с базовой станцией в центре, обслуживающей все подвижные станции в ячейке

Ячеечная, или сотовая, структура системы непосредственно связана с принципом повторного использования частот – основным принципом сотовой системы, определяющим эффективное использование выделенного частотного диапазона и высокую емкость системы. Принцип повторного использования частот мы рассмотрим в разд. 2.4, а пока будем просто полагать ячеечную схему удобным вариантом иерархического построения системы, принимая на веру утверждение о его преимуществах. В центре каждой ячейки находится базовая станция, обслуживающая все подвижные станции (абонентские радиотелефонные аппараты) в пределах своей ячейки (рис.11.2).

При перемещении абонента из одной ячейки в другую происходит передача его обслуживания от одной базовой станции к другой. Все базовые станции системы, в свою очередь, замыкаются на центр коммутации, с которого имеется выход во Взаимоувязанную сеть связи (ВСС) России, в частности, если дело происходит в городе, – выход в обычную городскую сеть проводной телефонной связи. На рис.11.3 приведена функциональная схема, соответствующая описанной структуре системы.

Отметим теперь некоторые моменты, связанные с упрощенностью изложенного выше схематичного представления.

Прежде всего, в действительности ячейки никогда не бывают строгой геометрической формы. Реальные границы ячеек имеют вид неправильных кривых, зависящих от условий распространения и затухания радиоволн, т.е. от рельефа местности, характера и плотности растительности и застройки и тому подобных факторов. Более того, границы ячеек вообще не являются четко определенными, так как рубеж передачи обслуживания подвижной станции из одной ячейки в соседнюю может в некоторых пределах смещаться с изменением условий распространения радиоволн и в зависимости от направления движения подвижной станции. Точно так же и положение базовой станции лишь приближенно совпадает с центром ячейки, который к тому же не так просто определить однозначно, если ячейка имеет неправильную форму. Если же на базовых станциях используются направленные (не изотропные в горизонтальной плоскости) антенны, то базовые станции фактически оказываются на границах ячеек.

 

Рис.11.3. Упрощенная функциональная схема системы сотовой связи: БС – базовая станция, ПС – подвижная станция (абонентский радиотелефонный аппарат)

 

Далее, система сотовой связи может включать более одного центра коммутации, что может быть обусловлено, в частности, эволюцией развития системы или ограниченностью емкости коммутатора. Возможна, например, структура системы типа показанной на рис.11.4 – с несколькими центрами коммутации, один из которых условно можно назвать «головным» или «ведущим».

 

Рис.11.4. Система сотовой связи с двумя центрами коммутации

 

В такой ситуации может возникнуть вопрос: что же такое система сотовой связи, чем определяются ее границы? Система – это то, что замыкается на один общий домашний регистр. В простейшей ситуации система содержит один центр коммутации (рис.11.3), при котором имеется домашний регистр, и она обслуживает относительно небольшую замкнутую территорию («небольшой город»), с которой не граничат территории, обслуживаемые другими системами. Если, условно говоря, «город побольше», то система может содержать два или более центров коммутации (рис.11.4), из которых только при «головном» имеется домашний регистр, но обслуживаемая системой территория по-прежнему не граничит с территориями других систем. В обоих этих случаях при перемещении абонента между ячейками одной системы происходит передача обслуживания, а при перемещении на территорию другой системы – роуминг. Наконец, если «город совсем большой», на его площади может оказаться несколько систем с граничащими территориями, каждая система – со своим домашним регистром. В таком случае при перемещении абонента из одной системы в другую может иметь место и так называемая межсистемная передача обслуживания. Как для роуминга, так и для межсистемной передачи обслуживания необходима аппаратурная совместимость систем (принадлежность их к одному и тому же стандарту сотовой связи), а также наличие соответствующих соглашений между компаниями-операторами.

Еще одна особенность связана с построением базовой станции. В стандарте GSM используется понятие система базовой станции (СБС), в которую входит контроллер базовой станции (КБС) и несколько (например, до шестнадцати) базовых приемопередающих станций (БППС) – рис.11.5.

 

Рис.11.5. Система базовой станции стандарта GSM: СБС – система базовой станции; КБС – контроллер базовой станции; БППС – базовая приемо-передающая станция; ПС – подвижная станция

 

В частности, три БППС, расположенные в одном месте и замыкающиеся на общий КБС, могут обслуживать каждая свой 120-градусный азимутальный сектор в пределах ячейки (соты) или шесть БППС с одним КБС – шесть 60- градусных секторов. В стандарте D-AMPS в аналогичном случае могут использоваться соответственно три или шесть независимых базовых станций, каждая со своим контроллером, расположенных в одном месте и работающих каждая на свою секторную антенну; для обозначения такой «строенной» или «ушестеренной» конфигурации иногда употребляется термин позиция ячейки, или позиция соты (cell site), хотя чаще наименование cell site является синонимом базовой станции.

Число примеров такого рода схематизма и упрощений на самом деле гораздо больше, но мы ограничимся пока приведенными пояснениями к функциональной схеме и, имея их в виду, перейдем к рассмотрению отдельных элементов системы.

 

 

Рассмотрение элементов системы сотовой связи начнем с подвижной станции – наиболее простого по функциональному назначению и устройству, к тому же единственного элемента системы, который не только реально доступен пользователю, но и находится у него в руках в буквальном смысле этого слова. Блок-схема подвижной станции приведена на рис.11.6. В ее состав входят:

– блок управления;

– приемопередающий блок;

– антенный блок.

 

Рис.11.6. Блок-схема подвижной станции

 

Приемопередающий блок, в свою очередь, включает передатчик, приемник, синтезатор частот и логический блок. Наиболее прост по составу антенный блок: он включает собственно антенну – в простейшем случае четвертьволновой штырь – и коммутатор прием-передача. Последний для цифровой станции может представлять собой электронный коммутатор, подключающий антенну либо на выход передатчика, либо на вход приемника, поскольку подвижная станция цифровой системы никогда не работает на прием и передачу одновременно.

Функционально несложен и блок управления. Он включает микротелефонную трубку – микрофон и динамик, клавиатуру и дисплей. Клавиатура (наборное поле с цифровыми и функциональными клавишами) служит для набора номера телефона вызываемого абонента, а также команд, определяющих режим работы подвижной станции. Дисплей служит для отображения различной информации, предусматриваемой устройством и режимом работы станции.

Приемопередающий блок значительно сложнее.

В состав передатчика входят:

– аналого-цифровой преобразователь (АЦП) – преобразует в цифровую форму сигнал с выхода микрофона, и вся последующая обработка и передача сигнала речи производится в цифровой форме, вплоть до обратного цифро-аналогового преобразования;

– кодер речи осуществляет кодирование сигнала речи – преобразование сигнала, имеющего цифровую форму, по определенным законам с целью сокращения его избыточности, т.е. с целью сокращения объема информации, передаваемой по каналу связи;

– кодер канала – добавляет в цифровой сигнал, получаемый с выхода кодера речи, дополнительную (избыточную) информацию, предназначенную для защиты от ошибок при передаче сигнала по линии связи; с той же целью информация подвергается определенной переупаковке (перемежению); кроме того, кодер канала вводит в состав передаваемого сигнала информацию управления, поступающую от логического блока;

– модулятор – осуществляет перенос информации кодированного видеосигнала на несущую частоту. Приемник по составу в основном соответствует передатчику, но с обратными функциями входящих в него блоков:

– демодулятор выделяет из модулированного радиосигнала кодированный видеосигнал, несущий информацию;

– декодер канала выделяет из входного потока управляющую информацию и направляет ее на логический блок; принятая информация проверяется на наличие ошибок, и выявленные ошибки по возможности исправляются; до последующей обработки принятая информация подвергается обратной (по отношению к кодеру) переупаковке;

– декодер речи восстанавливает поступающий на него с кодера канала сигнал речи, переводя его в естественную форму, со свойственной ему избыточностью, но в цифровом виде;

– цифро-аналоговый преобразователь (ЦАП) преобразует принятый сигнал речи в аналоговую форму и подает его на вход динамика;

– эквалайзер служит для частичной компенсации искажений сигнала вследствие многолучевого распространения; по существу, он является адаптивным фильтром, настраиваемым по обучающей последовательности символов, входящей в состав передаваемой информации; блок эквалайзера не является, вообще говоря, функционально необходимым и в некоторых случаях может отсутствовать.

Заметим, что для сочетания кодера и декодера иногда употребляют наименование кодек (например, канальный кодек, речевой кодек).

Помимо собственно передатчика и приемника, в приемопередающий блок входят логический блок и синтезатор частот. Логический блок – это по сути микрокомпьютер со своей оперативной и постоянной памятью, осуществляющий управление работой подвижной станции. Синтезатор является источником колебаний несущей частоты, используемой для передачи информации по радиоканалу. Наличие гетеродина и преобразователя частоты обусловлено тем, что для передачи и приема используются различные участки спектра (так называемое дуплексное разделение по частоте).

В заключение раздела отметим еще несколько моментов. Блок-схема на рис.11.6 является существенно упрощенной. На ней не показаны усилители, селектирующие цепи, генераторы сигналов синхрочастот и цепи их разводки, схемы контроля мощности на передачу и прием и управления ею, схема управления частотой генератора для работы на определенном частотном канале и т.п. Для обеспечения конфиденциальности передачи информации в некоторых системах возможно использование режима шифрования; в этих случаях передатчик и приемник подвижной станции включают соответственно блоки шифрования и дешифровки сообщений. В подвижной станции системы GSM предусмотрен специальный съемный модуль идентификации абонента (Subscriber Identity Module – SIM).

Подвижная станция системы GSM включает также так называемый детектор речевой активности (Voice Activity Detector), который в интересах экономного расходования энергии источника питания (уменьшения средней мощности излучения), а также снижения уровня помех, неизбежно создаваемых для других станций при работающем передатчике, включает работу передатчика на излучение только на те интервалы времени, когда абонент говорит. На время паузы в работе передатчика в приемный тракт дополнительно вводится так называемый комфортный шум. В необходимых случаях в подвижную станцию могут входить отдельные терминальные устройства (например факсимильный аппарат), в том числе подключаемые через специальные адаптеры с использованием соответствующих интерфейсов.

Если представить блок-схему аналоговой подвижной станции, то она будет проще рассмотренной цифровой благодаря отсутсвию блоков АЦП/ЦАП и кодеков, но сложнее за счет более громоздкого дуплексного антенного переключателя, поскольку аналоговой станции приходится одновременно работать на передачу и на прием.