Монохроматизация излучения

Работа с узкой полосой излучения обладает следующими преимуществами: 1) возрастает вероятность подчинения погло­щающей системы закону Бера (см. раздел 1.5.); 2)увеличивается селективность, поскольку вещества, поглощающие в других облас­тях спектра, мешают в меньшей степени; 3) если при выбранной длине волны поглощение велико, то при очень малом изменении концентрации наблюдается значительное изменение оптической плотности, что обусловливает высокую чувствительность.

Устройства для выделения части излучения основаны на ис­пользовании различных оптических явлений: интерференции, ди­фракции, поглощении света, дисперсии. Выделить абсолютно мо­нохроматическое излучение невозможно, на практике получают более или менее узкий интервал длин волн; этого достигают бездисперсионными (светофильтры) и дисперсионными (монохро-маторы) способами.

Важнейшими характеристиками этих устройств являются: 1)полоса пропускания - интервал длин волн, выходящих из моно-хроматора или светофильтра; ее характеризуют полушириной максимума пропускания; 2) разрешение - способность разделять соседние участки спектра, выражается отношением исследуемой длины волнык наименьшей разницемежду этой и соседней волнами, которые можно различить; 3) светосила - способ­ность пропускать излучение, в наиболее совершенных приборах она близка к 100 %; 4) дисперсия (для монохроматоров)- способ­ность разлагать излучение в спектр. Для ее характеристики ис­пользуют линейную дисперсию (где - расстояние между двумя линиями в спектре,разность их длин волн) или обратную величинуДисперсия зависит от материала призмы и конструкции монохроматора.

Светофильтрыобычно используются в видимой части спек­тра, они бывают нескольких типов.

Абсорбционные светофильтрыпредставляют собой цвет­ные стекла или стеклянные пластинки, между которыми помещен краситель, суспендированный в желатине. Первые обычно более термически устойчивы. Абсорбционные светофильтры пропускают излучение ограниченного интервала длин волн и поглощают излу­чение всех остальных, они характеризуются небольшой прозрач­ностью (Т = 0,1) и довольно широкой полосой пропускания (30 нм и более).

Характеристики интерференционных светофильтровзначи­тельно лучше. Светофильтр состоит из двух тончайших полупро­зрачных слоев серебра, между которыми находится слой диэлек­трика. В результате интерференции света из светофильтра будут выходить лучи с длиной волны, равной удвоенной толщине ди­электрического слоя. Прозрачность интерференционных свето­фильтров составляет: Т = 0,3 ^0,8 ; эффективная ширина про­пускания обычно не превышает 5-^10 нм. Для еще большего сужения полос пропускания пользуются системой двух последова­тельных интерференционных светофильтров.

При маркировке светофильтров указывают длину волны в максимуме пропускания и ширину полосы пропускания.

Монохроматор- это устройство, разлагающее излучение на составляющие его волны разной длины. Все монохроматоры со­стоят из диспергирующего устройства и связанной с ним системы линз, зеркал, входных и выходных щелей. Диспергирующими эле­ментами служат призмы и дифракционные решетки.

В призменном монохроматореизлучение проходит через входящую щель, сводится линзой в параллельный пучок и затем попадает под углом на поверхность призмы. На обеих гранях призмы происходит преломление (фиолетовый свет преломляется больше всего, красный свет - меньше всего); разложенное излучение фокусируется на слегка изогнутой поверхности, на которой расположена выходная щель. Поворотом призмы можно направить в эту щель излучение с требуемой длиной волны.

В видимой части спектра в качестве материала для призм используют стекло, в ультрафиолетовой - кварц из-за поглощения стеклом УФ - излучения. В инфракрасной спектроскопии использу­ют призмы из Li F, NaCl, KBr и других галогенидов щелочных ме­таллов (пробу помещают перед монохроматором, что уменьшает рассеянное излучение). Эти же материалы используют для изго­товления кювет. Кюветы для измерений в ультрафиолетовой и видимой областях спектра полностью изготовлены из кварца или стекла; кюветы, используемые для измерений в инфракрасной области, имеют оконца из монокристаллов галогенидов щелочных металлов.

Дифракционные решеткиизготавливают нанесением парал­лельных штрихов на стекло или другой прозрачный материал (до 6000 штрихов на 1 см). При освещении дифракционной решетки потоком излучения, прошедшим через входную щель, каждый штрих становится источником излучения. В результате интерфе­ренции многочисленных потоков излучение разлагается в спектр.

Ширина полосы пропускания монохроматоров достигает 1,5 нм.