Место и роль географических информационных систем (ГИС)
Общая технологическая схема создания тематических карт природных (земельных) ресурсов
Создание первичных планов и карт в большинстве случаев выполняется в настоящее время двумя методами: по результатам наземных геодезических съемок и, в большинстве случаев, с использованием материалов дистанционного зондирования местности. К таким материалам относятся полутоновые как цветные, так и черно-белые космические или аэрофотоснимки, полученные с помощью различных аэрофотосъемочных систем, устанавливаемых на борту искусственных спутников Земли, космических станциях, самолетах, вертолетах, дельтапланах и пр.
Комплекс работ по созданию земельно-ресурсных (в том числе и земельно-кадастровых) карт осуществляется по определенной технологической схеме, обобщенная блок-схема которой представлена на рисунке 1.
Рис. 1. Блок-схема создания земельно-ресурсных карт 6
На данной блок-схеме отчетливо просматриваются несколько отдельных крупных блоков (подсистем), основными из которых являются:
- фотограмметрическая подсистема, при помощи которой осуществляется ввод и преобразование полутоновых цветных или черно-белых фотоматериалов в цифровой вид, их последующая обработка и выдача конечной продукции в виде ортофотопланов (полутоновые изображения участка местности в ортогональной проекции) или штриховых кадастровых планов;
- подсистема цифрования ортофотопланов и карт, при помощи которой преобразуются в цифровой вид уже имеющиеся планы и карты;
- подсистема цифровой обработки, хранения и отображения картографической информации, которая служит для создания цифровой модели местности (ЦММ), путем преобразования растровых изображений в векторную форму, формирования те матических слоев, создания специальных хранилищ информации (баз данных) и электронных карт, выдачи готовой продукции в виде цветных земельно-кадастровых и других тематических карт.
Последние две подсистемы будут являться предметом подробного рассмотрения в последующих главах данного пособия, поэтому кратко остановимся на отдельных процессах, которые включает в себя фотограмметрическая подсистема. Это:
аэрофотосъемка;
геодезические работы по планово-высотной привязке опорных точек (опознаков);
фотограмметрическая обработка.
1. Аэрофотосъемку выполняют, как правило, аналоговыми аэрофотоаппаратами, в результате чего получают негативы, с которых контактным или проекционным способами изготавливают фотоотпечатки на бумаге или диапозитивы на прозрачных недеформирующихся пленках. В последние годы на рынке появились так называемые цифровые аэрофотокамеры, при помощи которых возможно получить непосредственно в процессе фотографирования цифровое фотоизображение местности и передать его для последующей обработки в компьютер, минуя стадию не только фотохимической обработки, но и стадию сканирования, т.е. преобразования фотоизображения в цифровой вид. Они работают как обычные фотокамеры, но вместо пленки в них используется светочувствительный элемент, преобразующий изображение в электрические сигналы. После кодирования сигналов они запоминаются в памяти камеры, откуда их можно в любое время переписать на компьютер. Далее можно обработать фотоснимки с помощью графических редакторов и распечатать их на принтере. Имея качественную фотокамеру, можно отказаться от использования сканера и копировального устройства.
В настоящее время ввод аналоговых фотоизображений осуществляется преимущественно сканированием фотоматериалов, в качестве которых используются как отдельные негативы или диапозитивы, так и рулонные аэрофильмы.
Сканеры для обработки аэрофото- и космических снимков достаточно дороги. К ним предъявляются очень высокие требования: разрешение до 10 мкм, точность 2-3 мкм (0,02-0,03 мм), формат 24 х 24 см. При этом следует учитывать, что в некоторых сканерах используется разное разрешение по горизонтали и по вертикали. Широко распространенные сканеры Hewlett Packard достаточно надежны и просты в использовании. Из дешевых сканеров следует отметить устройства, производимые фирмой Mustek,
На рисунке 3 представлена последняя модель фотограмметрического сканера Photoskan-2001 корпорации Z/I, которая образовалась от слияния двух мощнейших фирм Zeiss (Германия) и Intergraph (США).
Рис. 3. Фотоскан-2001
Фотоскан-2001 обладает наилучшими на сегодняшний день точностными характеристиками, например, инструментальная средняя квадратическая ошибка составляет величину 2 мкм.
2. Геодезические работы выполняются с целью определения планово-высотных координат некоторых наземных точек (опознаков), которые при дальнейшей фотограмметрической обработке используются для «привязки» всех фотоматериалов к местности. Именно планово-высотные данные, полученные на этом этапе, задают требуемую систему координат и проекцию, в которой в дальнейшем будут созданы планы и карты.
В настоящее время для определения геодезических координат широкое применение получила система спутникового позиционирования (GPS — аппаратура) (рис. 4). Ее использование позволило существенным образом упростить геодезический процесс, получая координаты опознаков с требуемой точностью, но значительно быстрее, чем при использовании традиционных геодезических приборов (теодолитов, электронных дальномеров, тахеометров и т.п.).
Рис. 4.
3. Фотограмметрическая обработка включает в себя такие процессы:
- как аналитическую фототриангуляцию, т.е. способ определения по опорным точкам координат других точек местности фотограмметрическими методами. В результате получают не только искомые координаты точек местности, но и так называемые элементы внешнего ориентирования модели, которые позволяют определить пространственное положение стереомодели в момент фотографирования. В последнее время элементы внешнего ориентирования стали определять непосредственно во время аэрофотосъемки, используя уже упоминавшиеся выше GPS-приемники;
- как векторизация (цифрование) объектов по стереомодели или цифровая стереофотограмметрическая обработка с одновременным дешифрированием этих объектов и представлением их в принятых условных обозначениях (рис. 5);
- как получение цифровой модели рельефа (рис. 6 а) и создание на ее основе цветных или черно-белых ортофотопланов (рис. 6 б).
Рис.5
Рис. 6
Описанная выше технология создания ортофотопланов по материалам дистанционного зондирования местности и необходимые для ее реализации фотограмметрические и картографические программно-технические средства широко применяется ныне во всех производственных подразделениях УФГП Госземкадастрсъемка (ВИСХАГИ) и доказала свою жизнеспособность в условиях рынка.
Как видно из приведенной блок-схемы, центральным ядром общей технологической схемы является подсистема цифровой обработки, хранения и отображения графической информации.