Здания из монолитного железобетона
Монолитными называют строительные конструкции, главным образом бетонные и железобетонные, основные части которых выполнены в виде единого целого (монолита) непосредственно на месте возведения здания или сооружения. При сочетании монолитных конструкций со сборными способ возведения и окончательная конструкция называются сборно-монолитными. Способ возведения зданий из монолитного и сборно-монолитного железобетона позволяет получить разнообразные формы зданий, любые формы и размеры проемов, различную этажность и т.п. Однако требования унификации геометрических параметров, нагрузок, типов изделий должны соблюдаться так же, как и для полносборных зданий.
Цельномонолитные здания — жилые, общественные, производственные — возводятся как с несущими стенами, так и с использованием каркаса в зависимости от технологических и функциональных требований. Отличительными особенностями таких решений являются четкость и простота конструктивных форм: колонны — круглого или прямоугольного сечения; перекрытия — в основном безбалочные, обеспечивающие свободу в расстановке перегородок, т.е. свободу планировочных решений; вертикальные диафрагмы жесткости упрощают конструкцию узлов сопряжения перекрытий с колоннами, работающими в этом случае только на вертикальные нагрузки; в перекрытиях укладываются все разводки труб для электро- и слаботочных устройств, что исключает необходимость в устройстве подвесных потолков или подсыпок под полы, в которых обычно размещают трубы.
Применение для многоэтажных каркасных зданий пространственных ядер жесткости, выполняемых из монолитного железобетона, позволяет возводить эти здания с усложненной конфигурацией в плане, с разнообразными объемно-планировочными решениями. В конструктивном же отношении образование сплошного, коробчатого в плане, сечения ядра жесткости вместо плоских стен жесткости но много раз увеличивает пространственную жесткость здания, а также позволяет значительно снизить расход бетона и стали.
Одним из эффективных направлений в строительстве многоэтажных зданий является применение сборно-монолитных крупнопанельных элементов. Однако возведение зданий из стандартных панелей ограничивается высотой 20—25 этажей. При такой этажности в панелях возникают значительные усилия от ветровых нагрузок, которые приводят к исчерпанию их несущей способности. Увеличение этажности может быть достигнуто сочетанием панельной системы с монолитным ядром жесткости, которое воспринимает все горизонтальные нагрузки, действующие на здание, освобождая панели для работы только на вертикальные нагрузки.
Монолитные и сборно-монолитные системы, применяемые в жилищном строительстве, ориентированы преимущественно на бескаркасные конструктивные системы в перекрестно-стеновом или поперечно-стеновом варианте. При смешанных конструктивных системах первый этаж — каркасный, верхние — бескаркасные.
Монолитное домостроение подчиняется жестким требованиям унификации: шаг продольных и поперечных стен 2,7—7,2 м с градацией 300 мм; высота жилых этажей 2,8 и 3 м; высота нежилых этажей 3,3; 3,6; 4,2 м; шаг несущих конструкций первых нежилых этажей: 6,0; 6,6; 7,2 м — может быть принят независимо от шага несущих конструкций вышерасположенных этажей здания.
Унификация позволила предусмотреть ряд вариантов решения основных конструкций зданий в зависимости от производственных и материальных возможностей района строительства. Неизменными во всех вариантах остаются монолитные внутренние стены толщиной не менее 160 мм при выполнении из тяжелого бетона и не менее 180 мм — из конструктивного легкого.
По технологическому признаку разнообразие монолитных и сборно-монолитных стен можно свести к трем модификациям — стены полностью монолитные; стены, содержащие только монолитный слой (либо пояс); стены, не содержащие монолитных бетонных включений.
Первая группа стеновых конструкций решается при возведении зданий в крупнощитовой и блочной опалубке. Монолитные стены проектируют однослойными из легких бетонов плотностью 1000—1200 кг/м , класса не ниже В3,5. Следует отметить, что современные энергоэкономические требования ограничили область применения таких конструкций южными районами страны.
Сборно-монолитные стены содержат и сборные элементы. Монолитный слой толщиной не менее 120 мм из тяжелого или легкого плотного бетона. Сборный элемент стены — «скорлупа» — имеет утепляющие и защитно-отделочные функции, располагается снаружи монолитного слоя, являясь его оставляемой опалубкой. Сборная «скорлупа» может иметь несколько вариантов конструкции: однослойная легкобетонная панель; панель из конструкционного легкого бетона с утепляющими вкладышами; железобетонная ребристая панель с толщиной плиты 80 мм и эффективным утеплителем. «Скорлупы» крепят к монолитному слою гибкими связями.
Когда климатические условия позволяют применить утепление изнутри, толщину монолитного слоя принимают не менее 160 мм при выполнении его из тяжелого бетона и не менее 200 мм — из легкого бетона. Внутренний утепляющий слой выполняют из газобетонных блоков плотностью 300—350 кг/м .
Рациональной областью применения монолитного железобетона являются конструкции перекрытий под большие нагрузки, в частности устройство безбалочных перекрытий. Возведение таких перекрытий методом подъема — один из прогрессивных методов. Основные особенности метода подъема перекрытий заключаются в изготовлении «пакета» перекрытий в виде плоских монолитных железобетонных плит на уровне земли и постепенном подъеме их по направляющим опорам. Направляющими опорами служат сборные железобетонные или металлические колонны, а также монолитные железобетонные ядра жесткости, возводимые в переставной или скользящей опалубке. Перекрытия поднимают с помощью специальных домкратов, устанавливаемых на колоннах.
Преимуществами этого метода являются: возможность создавать разнообразные объемно-планировочные решения зданий как с помощью изменения конфигурации бортовой опалубки перекрытий, так и благодаря отсутствию выступающих из перекрытий балок и ригелей, произвольному расположению в плане колонн; комплексная механизация процессов возведения зданий, удобство выполнения значительной части работ на уровне земли; возможность возводить объекты в условиях ограниченной строительной площадки (благодаря отсутствию наземных кранов и минимальных площадей для складирования материалов), что имеет особо важное значение в условиях строительства на сложном рельефе или на затесненных площадках среди существующей городской застройки.
Сборно-монолитные перекрытия состоят из двух элементов: нижней сборной плиты толщиной 40—60 мм и монолитного верхнего бетонного слоя толщиной 100—120 мм.
Сборные перекрытия монтируют из типовых изделий, применяемых в массовом строительстве: плит сплошного сечения или многопустотных элементов.
Лестницы, перегородки, лифтовые шахты монолитных и сборно-монолитных зданий выполняют сборными.
Тема 4.2. Крупнопанельные здания
Крупнопанельными называют здания, монтируемые из заранее изготовленных крупноразмерных плоскостных элементов стен, перекрытий, покрытий и других конструкций. Сборные конструкции имеют повышенную заводскую готовность — отделанные наружные и внутренние поверхности, вмонтированные окна и двери.
По конструктивной схеме здания бывают: бескаркасные, с продольными и поперечными несущими стенами и каркасные.
Бескаркасные здания состоят из меньшего числа сборных элементов, отличаются простотой монтажа и имеют преимущественное применение в массовом жилищном строительстве. В этих зданиях наружные и внутренние стены воспринимают все действующие нагрузки. Пространственная жесткость и устойчивость обеспечиваются взаимной связью между панелями стен и перекрытий. При этом существует четыре конструктивных варианта опирания плит перекрытий: на продольные несущие стены; по контуру; на внутренние поперечные стены; по трем сторонам (на продольную несущую и внутренние поперечные).
В каркасных панельных зданиях действующие на них нагрузки воспринимают ригели и стойки каркаса, а панели выполняют чаще всего лишь ограждающие функции. Различают следующие конструктивные схемы: с полным поперечным каркасом; с полным продольным каркасом; с пространственным каркасом; с неполным поперечным каркасом и несущими наружными стенами; с опи-ранием плит перекрытия по четырем углам непосредственно на колонны; с опиранием плит на наружные панели и на две стойки по внутреннему ряду. Эти схемы особенно эффективны для общественных зданий.
Важным этапом проектирования крупнопанельных зданий является выбор системы разрезки стен (рис. 4.1).
В крупнопанельных зданиях применяют горизонтальную схему (однорядная разрезка) членения — образуется одноэтажными панелями размером на одну комнату (с одним окном), на две комнаты и полосовая (из полосовых поясных и простеночных панелей). Вертикальная схема (двухрядная разрезка) образуется из панелей на два этажа: с одним окном на этаж и полосовая из двухэтажных про-
Рис. 4.1. Схемы разрезки фасада здания на панели: а — на комнату с окном; б — на две комнаты с окнами или окном
и балконной дверью; в — ленточная навесная панель; г — простеночные панели на два этажа с подоконными вставками
стеночных панелей и междуэтажных поясных панелей. В гражданском строительстве наибольшее распространение получила горизонтальная схема разрезки стен.
Конструкции стеновых панелей
К стеновым панелям, кроме основных требований, которые предъявляются к наружным стенам (прочность, малая теплопроводность, небольшая масса, огнестойкость, экономичность), предъявляют специальные требования: технологичность изготовления в заводских условиях; простота монтажа; совершенство конструкций стыков; высокая степень заводской готовности.
Стеновые панели ввиду их значительной длины и высоты при небольшой толщине не обладают устойчивостью. Эта устойчивость обеспечивается креплением панелей между собой, с конструкциями перекрытия и др. В зависимости от вида конструктивной схемы стеновые панели делятся на несущие, самонесущие, навесные. Панели наружных стен могут быть одно- и многослойными.
Однослойные панели изготовляют из однородного малотеплопроводного материала (легкого или ячеистого бетона), класс прочности которого должен соответствовать воспринимаемым нагрузкам, а толщина — учитывать климатические условия района строительства. Панель армируют сварным каркасом и сеткой. С наружной стороны панели имеется защитный слой из тяжелого бетона толщиной 20—30 мм и с внутренней стороны — отделочный слой из цементного или известково-цементного раствора толщиной 10—15 мм. Хорошим материалом для однослойных панелей является ячеистый бетон плотностью 600—700 кг/м . Толщина панелей зависит от климатических условий и принимается 240—320 мм. Эти паНели применяют для зданий с внутренними поперечными несущими стенами, где наружные стеновые панели являются самонесущими.
Двухслойные панели состоят из несущего слоя из плотного легкого (плотностью > 1000 кг/м3) или тяжелого бетона класса В10—В15 ^ и утепляющего слоя из теплоизоляционного легкого или ячеистого бетона или жестких теплоизоляционных плит. Толщина несущего слоя для стеновых панелей должна быть не менее 60 мм, его располагают с внутренней стороны помещения, чтобы он одновременно являлся и пароизоляционным. Теплоизоляционный слой снаружи защищают слоем декоративного бетона или раствора марки 50—70 толщиной 15—20 мм.
Трехслойные панели состоят из двух железобетонных плит и эффективного теплоизоляционного слоя (утеплителя), укладываемого между ними. В качестве утеплителя применяют полужесткие минераловатные плиты, пенополистирол, маты из стекловолокна, а также жесткие утеплители — пеностекло, пеносиликат, пенобетон и др. Железобетонные слои панели соединяются между собой сварными арматурными каркасами. Внутренний слой трехслойной панели принимают толщиной 80 мм, а наружный — 50 мм. Толщину слоя утеплителя определяют теплотехническим расчетом.
Асбестоцементные плиты могут иметь каркасную и бескаркасную конструкцию. Каркасная панель состоит из двух асбестоцементных листов: наружного толщиной 10 мм, внутреннего — 8 мм и каркаса между ними из асбестоцементных брусков специального профиля. Внутри панели укладывают утеплитель. Плиты крепят к каркасу на прочном полимерном клею. Бескаркасные панели состоят из наружного асбестоцементного листа толщиной 10 мм, которому придается коробчатая форма, и второго плоского листа, образующего внутреннюю поверхность панели. Между листами укладывается утеплитель. Толщина панелей равна 140 мм.
Панели внутренних стен изготовляют из тяжелого или легкого бетона (шлакобетона, керамзитобетона), а также ячеистых и силикатных бетонов. По конструктивному решению несущие панели внутренних стен могут быть сплошными, пустотелыми, часто ребристыми, с ребрами по контуру. Их высота соответствует размеру этажа, а длина кратна размерам конструктивной ячейки здания. Панели поперечных стен выполняют размером на комнату, панели продольных стен — на 1—2 комнаты.
Для бескаркасных крупнопанельных зданий характерны конструктивные схемы:
с малым шагом несущих поперечных стен — 2,7—3,6 м, поперечные и продольные стены здания — несущие. Панели наружных стен однослойные или трехслойные, внутренних стен — железобетонные толщиной 120—160 мм. Плиты перекрытия — железобетонные сплошные толщиной 120 мм с опиранием по контуру. Фундаментами наружных самонесущих стен служат сборные железобетонные блоки, внутренних несущих стен — железобетонные плиты прямоугольной формы. Наружные стены подземной части здания смонтированы из керамзитобетонных или железобетонных трехслойных цокольных панелей. Внутренние поперечные стены — из железобетонных панелей толщиной 120—160 мм. Перекрытие над подвалом — из плоских железобетонных плит толщиной 120 мм, опертых по контуру; с большим шагом несущих поперечных стен — 3,6—7,2 м, несущие поперечные стены из плоских железобетонных панелей толщиной 160 мм. Наружные продольные стены — самонесущие однорядной или поясной разрезки из панелей, изготовленных из легких или ячеистых бетонов. Межкомнатные перегородки — гипсобетонные толщиной 80 мм. Плиты перекрытия — сплошные железобетонные толщиной 160 мм или многопустотные толщиной 220 мм;
со смешанным шагом несущих поперечных стен. Наружные стены — самонесущие однорядной разрезки из керамзитобетонных панелей. Плиты перекрытия — сплошные толщиной 160 мм, опертые в узких ячейках по контуру, в широких ячейках — по двум сторонам, или многопустотные толщиной 220 мм. Подземная часть здания с большим и смешанным шагом несущих поперечных стен: фундаменты внутренних стен — железобетонные плиты, уложенные сплошной или прерывистой лентой; под наружные стены (участки между лентами фундаментов) укладывают бетонную подготовку толщиной 100 мм. Внутренние стены подземной части монтируют из железобетонных панелей толщиной 160 мм с проемами для прохода и пропуска коммуникаций. Наружные стены — из ребристых железобетонных цокольных панелей, утепленных керамзитобетоном. Подвал перекрывают многопустотными плитами толщиной 220 мм или сплошными толщиной 160 мм;
с тремя продольными несущими стенами пролетом 6 м. Наружные продольные стены — несущие из керамзитобетонных панелей толщиной до 400 мм. Внутренняя продольная стена — несущая из плоских железобетонных панелей толщиной 160-200 мм. Плиты перекрытия — железобетонные сплошные толщиной 160 мм. Подземная часть здания смонтирована из трапециевидных фундаментных плит, цокольных панелей и панелей внутренних стен.
В зданиях с поперечным расположением несущих стен лестницы состоят из площадок и маршей. Лестничные площадки укладывают на продольные стены и монтажные столики поперечных стен. Лестничные марши опирают на четверти продольного ребра площадки, и закладные детали соединяют сваркой.
В зданиях с продольным расположением несущих стен лестницы выполняют из маршей с полуплощадками, опертых на продольные стены здания.
Балконы консольно заделаны в наружную стену, они могут быть закрепленными с междуэтажным перекрытием или дополнительно опертыми на приставную Г-образную стойку. Плиты балкона имеют вынос до 1,2 м. Полы — цементные или керамической плитки с уклоном от здания. Ограждение высотой 1050 мм — в виде стальной решетки или защитного экрана из листовых материалов.
Стыки наружных и внутренних крупнопанельных зданий
Сопряжение панелей стен между собой и с перекрытиями называются стыками. Эксплуатационные качества крупнопанельных домов во многом зависят от конструктивного исполнения стыков. Стыки должны быть прочными, долговечными, водо- и воздухонепроницаемыми, иметь достаточную теплозащиту и быть несложными по способу заделки.
Стыки наружных стен подразделяют по расположению на горизонтальные и вертикальные.
Вертикальные стыки по способу связей панелей между собой разделяют на упругоподатливые и жесткие (монолитные).
При устройстве упругоподатливого стыка (рис. 4.2) панели соединяют с помощью стальных связей, привариваемых к закладным деталям стыкуемых элементов. В паз, образуемый четвертями, входит на глубину 50 мм стеновая панель внутренней поперечной стены. Соединяют панели с помощью накладки из полосовой стали, при
Рис. 4.2. Конструкция вертикального упругоподатливого стыка панелей:
1 — стальная накладка; 2 — закладные детали;
3 _ тяжелый бетон; 4 — термовкладыш; 5 — полоса гидроизола
или рубероида; 6 — гернит или пороизол; 7 — раствор или герметик
вариваемой к закладным деталям панели. Для герметизации стыка в его узкую щель заводят уплотнительный шнур гернита на клею или пороизола на мастике. С наружной стороны стык промазывают специальной мастикой — тиоколовым герметиком. Для изоляции от проникновения влаги с внутренней стороны стыка наклеивают на битумной мастике вертикальную полоску из одного слоя гидроизола или рубероида. Вертикальные колодцы стыка заполняют тяжелым бетоном. Недостатком упругоподатливых стыков является возможность коррозии стальных связей и закладных деталей. Такие крепления податливы и не всегда обеспечивают длительную совместную работу сопрягаемых панелей и, следовательно, не могут предохранить стык от появления трещин.
Более распространенными являются жесткие монолитные стыки. Прочность соединения между стыкуемыми элементами обеспечивается замоноличиванием соединяющей стальной арматуры бетоном. На рис. 4.3 приведен монолитный стык однослойных стеновых панелей с петлевыми выпусками арматуры, соединительными скобами из круглой стали диаметром 12 мм. Между замоноличенной зоной стыка и герметиком образована воздушная вертикальная полость, которая служит дренажным каналом, отводящим попадающую внутрь шва воду с выпуском ее наружу на уровне цоколя. Нередко в стык панелей для повышения его теплозащитных свойств укладывают минераловатный вкладыш, обернутый полиэтиленовой пленкой или из пенопласта.
Рис. 4.3. Монолитный вертикальный стык:
а — вертикальный стык; б — то же с утепляющим пакетом;
1 — наружная керамзитобетонная панель; 2 — анкер диаметром 12 мм;
3 — дренажный канал; 4 — пороизоловый жгут; 5 — герметик;
6 — прокладка; 7 — скобы; 8 — бетон; 9 — внутренняя несущая панель
из железобетона; 10 — петля; 11 — минераловатный пакет
Для устройства жестких стыков используют также сварные анкеры — связи, которые представляют собой Т-образные элементы, изготовленные из полосовой стали и располагаемые в стыке «на ребро». При этом в стеновых панелях оставляют концевые выпуски арматуры (в пределах габарита форм), которые приваривают после установки панелей к концам анкеров. Такое соединение позволяет обеспечить плотное заполнение полости стыка бетоном, почти втри раза уменьшить расход стали.
Вертикальные стыки по особенностям заделки наружной части бывают: закрытые, защищаемые снаружи цементным раствором, герметизирующей мастикой, упругой прокладкой, а изнутри — прослойкой рубероида, утепляющим пакетом и монолитным бетоном; открытые с раздельными водо- и воздухонепроницаемыми преградами; водоотбойная лента, не допуская влагу вовнутрь стыка, одновременно отводит ее наружу; дренированные снаружи защищены так же, как и закрытые стыки, но их конструкция допускает поэтажный отвод влаги, попавшей вовнутрь стыка. Влага через декомпрес-сионный канал стекает вниз, здесь через дренажное отверстие на пересечении вертикального и горизонтального стыков водоотводя-щим фартуком выводится наружу. Таким образом, дренированный стык по способу заделки относится к закрытым, а по характеру работы — к открытым.
Для устройства горизонтальных стыков верхнюю стеновую панель укладывают на нижнюю на цементном растворе. При этом через горизонтальный шов, плотно заполненный раствором, дождевая вода может проникать вследствие капиллярного подсоса воды через раствор. Поэтому в стыке устраивают противодождевой барьер, идущий сверху вниз. На наклонной части раствор прерывают и создают воздушный зазор, в пределах которого подъем влаги по капиллярам прекращается (рис. 4.4).
РИС.4.4. Конструкция горизонтального стыка однослойных стеновых панелей.
1 — железобетонная панель перекрытия; 2 — цементный раствор; 3 — стеновая панель; 4 — противодождевой барьер; 5 — герметизирующая
мастика (тиоколовая или полиизобутиленовая УМС-50); 6 — пороизол или гернит; 7 — термовкладыш в гидроизоляционной оболочке
Рис. 4.5. Типы стыков колонн: а — сферический; б — плоский безметальный; 1 — сферическая бетонная поверхность; 2 — выпуски арматурных стержней; 3 — стыковочные ниши;
4 — паз для монтажа хомута; 5 — раствор или мелкозернистый бетон;
6 _ центрирующий бетонный выступ; 7 — сварка выпусков арматуры
Соединение панелей внутренних стен бескаркасных зданий осуществляется путем приварки соединительных стержней диаметром 12 мм к закладным деталям по верху панели. Вертикальные швы между панелями заполняют упругими прокладками из антисепти-рованных мягких древесно-волокнистых плит, обернутых толем, а вертикальный канал заполняют мелкозернистым бетоном или раствором.
Каркасно-панельные здания
Каркасно-панельные здания широко применяются при строительстве общественных зданий. Для них характерны две конструктивные схемы — с поперечным и продольным расположением ригелей.
Элементы сборного железобетонного каркаса включают колонны прямоугольного сечения высотой один-два этажа с одной консолью для крайнего ряда и двумя консолями для среднего ряда; ригели таврового сечения с одной или двумя полками для опирания плит перекрытия и лестничных маршей; плиты перекрытия (многопустотные или сплошные), состоящие из межколонных (связевых), пристенных с пазами для колонн и рядовых плит шириной 1200, 1500 мм.
Сопряжение элементов каркаса, осуществляемое на опоре, называют узлом. К узлу относят:
стык колонн: колонну опирают через бетонные выступы оголовков, сваривая выпуски арматуры и замоноличивая стык (рис. 4.5); опирание ригеля на консоль колонны: на поверхности консоли закрепляют сваркой закладных деталей, наверху —стальной накладкой, приваренной к закладным деталям колонны и ригеля, затем швы замоноличивают раствором (рис. 4.6); опирание плиты перекрытия на ригель: уложенные плиты на полки ригелей соединяются между собой стальными связями, зазоры между ними заделываются раствором. Различают следующие системы каркасов: рамные, рамно-свя-зевые, связевые.
Рамная система (рис. 4.7) состоит из колонн, жестко соединенных с ними ригелей перекрытий, располагаемых во взаимно-перпендикулярных направлениях и образующих жесткую конструктивную систему.
Врамно-связевых системах (рис. 4.8) совместная работа элементов каркаса достигается за счет перераспределения доли участия в ней рам и вертикальных стенок-связей (диафрагм). Стенки-диафрагмы располагают по всей высоте здания, жестко закрепляют в фундаменте и с примыкающими колоннами. Их размещают в направлении,
Рис. 4.6. Узел соединения ригеля с колонной:
1 — колонна; 2 — закладная деталь; 3 — соединительная планка;
4 — ригель; 5 — цементный раствор
Рис. 4.7. Схема здания с рамной системой: 1 — колонна; 2 — ригели
Рис. 4.8. Схема зданий с рамно-связевыми каркасами:
а — с плоскими связями; б — с пространственными связями;
1 — колонны; 2 — ригели; 3 — плоские связевые элементы
перпендикулярном направлению рам, и в их плоскости. Расстояние между стенками-связями обычно принимают 24—30 м. Эти системы применяют при проектировании общественных зданий высотой до 12 этажей с унифицированными конструктивно-планировочными сетками бхбибхЗм.
Для общественных зданий большой этажности применяют связевые системы каркасов с пространственными связевыми элементами в виде жестко соединенных между собой под углом стенок или пространственных элементов, проходящих по всей высоте здания, образующих так называемое ядро жесткости (рис. 4.9). Эти пространственные связевые элементы жесткости закрепляют в фундаментах и соединяют с перекрытиями, образующими поэтажные горизонтальные связи-диафрагмы (диски), которые и воспринимают передаваемые на стены горизонтальные (ветровые) нагрузки. Пространственные связевые элементы размещают обычно в центральной части высотных зданий.
Пространственная жесткость каркасно-панельных зданий обеспечивается: жестким сопряжением элементов каркаса в узлах; установкой стенок жесткости; укладкой связевых и пристенных плит
Рис. 4.9. Схема зданий со связевыми элементами: а — коробчатыми; б — Х-образными; в — круглыми; г — двутавровыми
между колоннами здания; заделкой швов между плитами перекрытия; устройством связей стен лестничных клеток и лифтовых шахте каркасом здания.
Стенами каркасных зданий являются панели из легких или ячеистых бетонов толщиной 250—300 мм. По местоположению в стене различают панели: поясные (цокольные, междуэтажные, парапетные) длиной 3—6 м и высотой 0,9—2,1 м; простеночные шириной 0,3—1,8 м и высотой 1,2—2,7 м; угловые для внешних и внутренних углов. Стеновые панели могут быть самонесущими и навесными. Панели опирают на перекрытие или на наружный продольный ригель. К колонне стеновые панели крепят с помощью стальных элементов, привариваемых к закладным деталям.
В табл. 4.1 приведены технико-экономические показатели панельных зданий.
Таблица 4.1