Биномиальные коэффициенты — это коэффициенты бинома!
Как вычислить факториал?
В условие (16) входит r!; этот-то факториал и «мешает» нам. Вспомним, что факториал фигурирует в выражении для биномиальных коэффициентов 10: при t ≥ r
| t(t – 1) ... (t – r + 1) r! | , |
то есть
r! = | t(t – 1) ... (t – r + 1) (tr) | . |
Многочлен, стоящий в числителе, имеет довольно сложную структуру. Попытаемся заменить его более простым — а именно, многочленом tr. При t ≥ r имеем:
| (19) |
Легко видеть, что
| (20) |
однако эта запись факториала нам ничего не даст, поскольку t, будучи параметром в искомой системе уравнений, сможет принимать любые, сколь угодно большие, но конечные значения. Но мы и не будем переходить к пределу, а воспользуемся целочисленностью r! — из (19) и (20) следует, что при достаточно больших t
| (21) |
Лемма 4. Формула (21) верна как только t≥2rr+2.
Лемма 4 позволяет преобразовать условие (16) в эквивалентную ему относительно параметров r и s систему (проверьте эквивалентность!)
|
|
Здесь условия (22), (24) и (25) имеют требуемый вид, и нам остаётся лишь найти систему экспоненциально диофантовых уравнений, эквивалентных условию (23) относительно параметров r, t и c.
Итак, нам осталось «избавиться» от биномиального коэффициента.
Только что мы использовали выражение биномиальных коэффициентов через факториал; но биномиальные коэффициенты имеют много и других определений. Воспользуемся теперь тем, что
| (26) |
Эта формула является определением биномиальных коэффициентов, если рассматривать её как тождество относительно u. Но нам нужно, чтобы u было неизвестной, принимающей в каждом конкретном решении искомой системы лишь одно значение.
Заметим, что
| (27) |
и, таким образом, если
u > 2t, | (28) |
то (t0), (t1), ..., (tt) — это цифры в записи числа (u+1)t в позиционной системе счисления с основанием u. Следовательно, биномиальные коэффициенты однозначно определяются тем условием, что равенство (26) и неравенства (27) и (28) одновременно выполнены хотя бы при одном значении u.
Лемма 5. Условие (23) эквивалентно относительно параметров r, t, c системе условий
| (29) (30) (31) (32) (33) |
Здесь все условия уже имеют необходимый нам вид.
Итак, мы показали, что условие (11) эквивалентно относительно параметра p системе, состоящей из экспоненциально диофантовых уравнений (15), (18), (22), (24), (25), (29)–(33). Чтобы получить требуемый экспоненциальный многочлен, осталось переименовать переменные r, s, t, c и u в x10, x11, x12, x13, x14, объединить по лемме 2 все уравнения в одно и преобразовать по лемме 1 это уравнение к искомому виду (10).