Эксцесс

Коэффициент асимметрии

 

Определение. Отношение центрального момента третьего порядка к среднеквадратическому отклонению в третьей степени называется коэффициентом асимметрии.

 

 

Определение.Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом.

Кроме рассмотренных величин используются также так называемые абсолютные моменты:

Абсолютный начальный момент: .

Абсолютный центральный момент: .

Абсолютный центральный момент первого порядка называется средним арифметическим отклонением.

Заключение по лекции:

В лекции мы рассмотрели методы решения основной задачи теории вероятностей – определения вероятности попадания непрерывной случайной величины на интервал с помощью плотности распределения.

В ходе подготовки к последующей лекции и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.

 

Задание на самостоятельную работу

Изучить:

· Вентцель Е.С. Теория вероятностей. Учебник. Издание восьмое, стереотипное. – М.: Высшая школа, 2002 г. - 575 с. – стр. 84-103

· Вентцель Е.С., Овчаров Л.А.. Теория вероятностей и ее инженерные приложения. Учебное пособие. Издание третье, переработанное и дополненное. – М.: «Академия», 2003 г. – 464 с. – стр. 96-116

· Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие. Издание десятое, стереотипное. - М.: Высшая школа», 2004 г. – 480 с.- стр.75-99.


Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное

Учебные и воспитательные цели:

1. Дать представление о законах распределения непрерывных величин.

Вид занятия:лекция.

Продолжительность занятия:90 минут.

Учебно-материальное обеспечение занятия:

Медиа-проектор, ноутбук, слайды Power Point (Оверхэд-проектор, слайды).

Литература:

а) основная:

1. Вентцель Е.С. Теория вероятностей. Учебник. Издание восьмое, стереотипное. – М.: Высшая школа, 2002 г. - 575 с.

2. Вентцель Е.С., Овчаров Л.А.. Теория вероятностей и её инженерные приложения. Учебное пособие. Издание третье, переработанное и дополненное. – М.: «Академия», 2003 г. – 464 с.

3. Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие. Издание десятое, стереотипное. - М.: Высшая школа», 2004 г. – 480 с.

Структура занятия и расчёт времени

Структура занятия Время, мин
I. Вводная часть занятия
II. Основная часть занятия
Введение в лекцию 5-10
1. Равномерное распределение
2. Показательное распределение
3. Нормальный закон распределения
Заключение по лекции
III. Заключительная часть занятия