Ветровой дрейф

Условия движения судна постоянным курсом с углом ветрового дрейфа выражаются вторым и третьим уравнениями системы (7.1), которые для случая установившегося движения, когда инерционные силы и момент равны нулю, можно записать в следующем виде:

RY ± PPY = AY (9.8)

MY ± MP = MA

Ветер, дующий со скоростью W под произвольным курсовым углом, воздействует на надводную часть судна силой A, которую в общем случае можно разложить (рис. 9.3) на две составляющие: продольную Ах и поперечную Ау.

Продольная составляющая Ах, складываясь алгебраически с силой сопротивления Rx увеличивает или уменьшает скорость движения судна Vx. Эта скорость учитывается лагом, поэтому силу Ах можно не рассматривать.

Сила Ау, действующая перпендикулярно ДП, заставляет судно смещаться в поперечном направлении со скоростью VY, называемой скоростью дрейфа. В данных условиях направление и скорость действительного перемещения судна относительно воды определяются вектором V, который является геометрической суммой векторов Vx и Vy (см. рис.9.3).

Непосредственно из приведенной схемы следует

(9.9)

Для получения формулы угла дрейфа можно воспользоваться первым уравнением системы (9.8) на том основании, что гидродинамическая сила Ry согласно (9.7) зависит от угла дрейфа.

Боковая сила руля PPY, возникающая в связи с перекладкой руля для удержания судна на курсе, по сравнению с силой Ry при движении с углом дрейфа относительно невелика, поэтому ее в первом приближении можно не учитывать и тогда

RY = AY

а после подстановки значений (9.2) и (9.6)

(9.10)

Можно принять среднее значение аэродинамического коэффициента

Сay = 1,18 sin qw. (9.11)

Подстановка в уравнение (9.10) выражений (9.8) и (9.11) приводит к квадратному уравнению относительно «sin a». Решение этого уравнения с последующим переходом от скорости относительно воды V, выраженной в м/с, к скорости по курсу Vл, выраженной в уз

() и некоторые упрощающие преобразования дают рабочую формулу для определения угла дрейфа

(9.12)

где W — скорость кажущегося ветра, м/с;

Vл — скорость судна по курсу, уз;

k — коэффициент дрейфа, который можно рассчитывать по приближенной формуле:

(9.13)

Сопоставление с формулой (9.9) показывает, что числитель формулы (9.12) выражает скорость бокового перемещения судна под влиянием ветра (скорости дрейфа), а знаменатель — скорость судна по курсу.

Из формулы (9.12) видно, что скорость дрейфа Уу зависит от скорости по курсу Vл: чем больше Ул, тем меньше VY при тех же значениях W и qW.

Для практического применения полученной формулы следует учесть еще то обстоятельство, что скорость ветра вблизи поверхности моря за счет трения нижнего слоя воздуха о поверхность воды меньше, чем в более высоких слоях. Поскольку измерение скорости ветра анемометром выполняется на высоте мостика, то результаты оказываются несколько завышенными по сравнению со средней скоростью ветра, воздействующего на надводную часть.

Профиль скоростей ветра на высоте подчиняется логарифмиче­скому закону, из которого вытекает, что для получения эквивалент­ного давления скорость ветра, измеренная над верхним мостиком, должна быть умножена на коэффициент 0,83, т. е.

W=0,83W, (9.14)

где W — эквивалентная скорость кажущегося ветра для использования в формуле (9.12), м/с;

W — скорость кажущегося ветра, измеренная анемометром над верхним мостиком, м/с.

Опыт практического использования формулы (9.12) на различных судах показывает, что предвычисление угла дрейфа обеспечивается с точностью 1—2°, что примерно соответствует точности графического счисления пути судна.

Угол дрейфа по формуле (9.12) в условиях плавания легко рассчитывать с помощью калькулятора. При этом следует иметь в виду, что коэффициент дрейфа ka для каждого конкретного судна зависит только от его осадки, поэтому значения коэффициента целесообразно заранее рассчитать для рабочего диапазона осадок судна с интервалом, например, через 1 м и использовать то значение ka, которое соответствует средней осадке на данный период плавания. Переменными величинами будут скорость кажущегося ветра W в м/с, его курсовой угол qw и скорость судна Vл уз.

Наиболее просто угол дрейфа может быть получен из специальных таблиц дрейфа, рассчитанных по формулам (9.12) с учетом (9.13) и (9.14).

Таблицы дрейфа являются универсальными и могут быть использованы на любом судне по заранее вычисленным значениям ka для разных осадок.

Влияние переложенного руля на угол дрейфа. При определении угла дрейфа по формуле (9.12), а также с помощью таблиц или номограммы, построенных по указанной формуле, не учитывается тот факт, что под действием аэро- и гидродинамической сил, точки приложения которых в общем случае не совпадают с ЦТ судна, последнее имеет тенденцию разворачиваться вокруг вертикальной оси, т. е. приводиться к ветру или уваливать в зависимости от знака результирующего момента действующих сил.

Чтобы обеспечить движение заданным курсом, приходится перекладывать руль на некоторый средний угол, т. е. создавать момент боковой силы руля для компенсации результирующего момента аэро-и гидродинамической сил. При этом поперечная сила руля Рру, складываясь алгебраически с поперечной аэродинамической силой Ау, увеличивает или уменьшает скорость бокового перемещения судна Vу, что приводит к изменению угла дрейфа а на величину ∆а, которая зависит от отношения площадей руля и погруженной части ДП — Sр/Sу.

Для морских транспортных судов можно приблизительно считать, что в среднем:

Sp/Sy ≈ 0.917 (9.15)

Учесть влияние перекладки руля на угол дрейфа можно с помощью приближенной формулы, полученной с учетом (9.15),

∆a0 = ± 0.2 δp (9.16)

Из приведенной формулы видно, что на каждые 5° перекладки руля угол дрейфа изменяется приблизительно на 1°. При перекладке руля под ветер (судно стремится к ветру) абсолютное значение угла дрейфа уменьшается на величину ∆а°. Если же судно уваливает, и приходится руль перекладывать на ветер, то значение угла дрейфа соответственно возрастает.

Дрейф судна с остановленными двигателями.

Иногда судну приходится длительное время находиться в море с остановленными двигателями (ожидание светлого времени, неисправность двигателя, ожидание распоряжений и т. п.). При наличии ветра судно в данных обстоятельствах дрейфует с некоторой скоростью, направление которой в общем случае не совпадает с направлением действующего ветра.

При установившемся дрейфе аэродинамическая сила А уравновешивается гидродинамической силой R. Для равновесия судна по курсу необходимо, чтобы аэро- и гидродинамическая силы действовали в одной плоскости. При этом условии аэро- и гидродинамический моменты уравновешивают друг друга.

Указанному условию соответствуют положения судна носом или кормой строго против ветра, однако это случаи неустойчивого равновесия, так как при любом случайном отклонении ДП от данного направления возникает поперечная аэродинамическая сила, момент которой стремится развернуть судно еще больше от линии ветра. Одновременно возникает поперечная гидродинамическая сила, момент которой разворачивает судно в том же направлении, что и аэродинамический момент (рис. 75).

Действующие при свободном дрейфе силы и их моменты стремятся развернуть судно приблизительно лагом к ветру, следовательно, где-то вблизи этого направления и должно быть положение устойчивого равновесия. Данный вывод подтверждается опытом: суда в установившемся свободном дрейфе располагаются примерно лагом к ветру.

Рис. 9.5 Силы и моменты, действующие на судно в свободном дрейфе.

Аналитическое определение условий устойчивого свободного дрейфа выражается системой трех уравнений (7.1), которые для случая установившегося режима, т. е. при отсутствии инерционных сил, а также равенства нулю силы упора винта и силы на руле, имеют вид:

Rx = Ax

Ry = Ay (9.17)

MR = MA

Система (9.17) выражает условие равновесия аэро- и гидродинамических сил по осям X и Y, а также равновесие аэро- и гидродинамического моментов вокруг оси Z.

Продольная гидродинамическая сила Rx выражается зависимостью:

(9.18)

где Сx — коэффициент продольной гидродинамической силы, который для движения с углом дрейфа может быть получен по эмпирической формуле

(9.19)

Продольная аэродинамическая сила Ах выражается приближенной формулой:

Ax = 1.3 QxW2cosqW (9.20)

где Qx — лобовая площадь парусности, м2.

Ранее были приведены формулы для выражения поперечных сил и их коэффициентов: (9.2), (9.6), (9.7) и (9.11).

Условие равновесия одновременно по осям X и Y можно получить, если поделить второе уравнение на первое системы (9.17):

(9.21)

Подставляя в найденное условие выражения (9.2), (9.6), (9.18) и (9.20), окончательно получим

(9.22)

Полученное выражение дает возможность для любого значения угла дрейфа «а» определить значение курсового угла ветра qW при котором обеспечивается равновесие сил по продольной и поперечной осям одновременно.

Второе условие устойчивого свободного дрейфа выражается равновесием аэро- и гидродинамического моментов относительно вертикальной оси, проходящей через ЦТ судна.

Если разделить третье уравнение на второе системы (9.17), то, учитывая, что отношение момента к силе равняется плечу этой силы, получим указанное условие в виде равенства плеч аэро- и гидродинамической сил:

R = ℓA (9.23)

Подставляя значения плеч из формул (9.3) и (9.4) и учитывая при этом, что ЦБС располагается, как правило, достаточно близко к ЦТ судна (ℓЦБС= 0), получим окончательно второе условие равновесия при свободном дрейфе

qw= 2(а0 – 450 + 180 ℓцп) .(9.24)

 

Рис. 9.5. Положение судна при свободном дрейфе в зависимости от знака смещения ЦП от ЦТ

а) ЦП смещен в нос от ЦТ; б) ЦП смещен в нос от ЦТ

Положение устойчивого равновесия при дрейфе с остановленными двигателями будет иметь место при одновременном выполнении двух условий, выражаемых формулами (9.22) и (9.24).

На большинстве морских судов коэффициент 6 находится в пределах 0,6 - 0,8, а отношение d/L--в пределах 0,03 - 0,07, поэтому можно приближенно принять средние постоянные значения:

δ = 0.7; d/L = 0.05.

Положения судна при свободном дрейфе в зависимости от знака ℓцп и действующей силы показаны на рис.76.

При свободном дрейфе практически важно знать не только направление движения, но и скорость судна относительно воды V.

(9.25)