Биосинтез белка.

Принцип комплементарного спаривания азотистых оснований нуклеотидов лежит в основе реализации генетической информации в процессе биосинтеза белка.

Главные условия для биосинтеза белка похожи на условия репликации ДНК.

1. Наличие исходной матрицы – молекулы ДНК. Она определяет точную последовательность нуклеотидов, а значит и последовательность аминокислот в полипептидной цепочке собираемого белка.

2. Наличие строительного материала. Строительным сырьем для РНК являются отдельные рибонуклеотиды с азотистыми основаниями: аденин, гуанин, цитозин, урацил.

3. Наличие энергии АТФ.

4. Наличие ферментов (например, РНК-полимеразы).

5. Наличие места для синтеза. Местом первого этапа биосинтеза белка является ядро эукариотической клетки или цитоплазма (прокариоты), а второй этап протекает на рибосомах гранулярной эндоплазматической сети.

Последовательность событий при репликации РНК.

Условно выделяют 2 этапа этого процесса, но между ними происходит процессинг – "созревание" и-РНК.

1. Транскрипция. Дословно "транскрипция" переводится, как "переписывание". На первом этапе происходит синтез м-РНК из свободных рибонуклетидов. Лучше называть первый этап синтезом м-РНК.

– Расхождение нитей двойной спирали ДНК, как испорченной застежки – молнии ("старые" водородные связи между комплементарно спаренными азотистыми основаниями параллельных цепочек ДНК разрываются не с конца молекулы а с любого участка, при этом, впереди и позади разрыва по цепочке ДНК эти водородные связи сохраняются).

– Свободные рибонуклеотиды комплементарно спариваются с освободившимися на ДНК азотистыми основаниями нуклеотидов "новыми" водородными связями.

– Фермент РНК-полимераза сшивает рибонуклеотиды ("нажив- ленные" водородными связями) в цепочку м-РНК прочными ковалентными связями.

– Новая м-РНК отходит от участка ДНК (цепочки ДНК восстанавливают "старые" водородные связи).

В результате процессинга матричная (м-РНК) освобождается от "технологических" нуклеотидов, не содержащих информации о строении белка и превращается в и-РНК.

2. Трансляция. Это перевод информации с "языка" нуклеиновых кислот на "язык" белков.

– Молекула и-РНК движется по направлению к рибосомам и связывается сразу с несколькими из них, формируя полирибосому.

– К рибосомам с помощью т-РНК транспортируются аминокислоты, фиксированные на "черешке клеверного листа" т-РНК.

Антикодоны т-РНК комплементарно взаимодействуют с трип- летными кодонами и-РНК и образуют водородные связи

– Две соседние молекулы т-РНК, связавшиеся на рибосоме с и-РНК, создают условия для образования пептидной связи между аминокислотами, фиксированными на их "черешках".

– После образования пептидной связи первая т-РНК, "отпускает" свою аминокислоту, а сама разрывает водородные связи и уходит с рибосомы в цитоплазму на "охоту" за новой аминокислотой. Вторая т-РНК (с двумя аминокислотами), спаренная с и-РНК, смещается на место первой в рибосоме.

– Следующая т-РНК с третьей аминокислотой образует комплементарные водородные связи с третьим кодоном и-РНК, создавая условия для пептидной связи между второй и третьей аминокислотой, процесс повторяется и полипептидная цепочка растет.

– Рост полипептидной цепочки продолжается до терминирующего кодона и-РНК, после которого новый белок покидает рибосому и приобретает рабочую пространственную конформацию.

Т. о., с помощью генетического кода ДНК можно записать любую последовательность аминокислот и синтезировать любой белок. ДНК хранит информацию и о молекулах небелковой природы (нуклеотиды, фосфолипиды, углеводы, пигменты и т.д.). Чтобы инициировать любую биохимическую реакцию надо обеспечить ее ферментативным аппаратом. Чтобы получить небелковое соединение (например, пигмент), надо сделать белок-фермент-катализатор для его синтеза и (или) синтеза его составных частей. И в этом случае ключевым молекулярным механизмом является принцип комплементарного спаривания азотистых оснований нуклеотидов.

Размножение является фундаментальным свойством живых организмов. Эта способность может отсутствовать у некоторых особей вида (рабочие пчелы, люди старческого возраста), но это не значит, что они не живые. Таким образом, способность к размножению свойственна всему виду в целом, а её потеря приведет вид к вымиранию.

Размножение на молекулярном уровне происходит путем воспроизводства генетической информации (репликация ДНК). В случае бесполого размножения, точная передача всей последовательности нуклеотидов от материнской клетки к дочерним приводит к их полной идентичности. Так, деление одной бактерии, как правило, приводит к возникновению колонии микроорганизмов, унаследовавших все свойства исходной материнской клетки. Для такого бесполого размножения достаточно единственной особи вида. Однако, если такая группа идентичных особей попадает в неблагоприятные условия среды обитания (воздействие антибиотиков), то вероятность выживания этой популяции низкая. Гибель любой бактериальной клетки от действия противомикробного препарата покажет возможность гибели всей популяции. Эта слабость бесполого размножения используется при определении чувствительности патогенных бактерий к действию антибиотиков. Бактерии из организма больного человека высевают на питательную среду, в которой имеются диски, пропитанные разными антибиотиками. Если микробы вокруг диска не растут, то это свидетельствует об эффективности антибиотика. Для лечения выбирают тот из них, который дал вокруг своего диска самую большую зону отсутствия роста микроорганизмов. Бесполым путем (клубнями, усами, стеблями) размножаются многие растения и относительно простые животные, например, кишечнополостные.

Второй способ размножения называют "половым". В большинстве случаев для его осуществления необходимо взаимодействие двух особей вида, но главная особенность полового размножения заключается в другом. При половом размножении происходит пересортировка генетического материала и формирование неидентичных дочерних особей. Эту особенность полового размножения называют "комбинативной изменчивостью". Особи вида, использующие половое размножение, не одинаково реагируют на воздействие факторов среды обитания. Если вредное воздействие среды убивает одну особь, то это не означает, что такое же воздействие погубит всю популяцию. Так, эпидемии особо опасных инфекций (чума, натуральная оспа, холера) уничтожали значительную часть человечества, но всегда находились люди с высокой устойчивостью к этим заболеваниям и выживали. Даже бактерии, которые, как правило, размножаются бесполым путем, иногда сливаются друг с другом (конъюгируют), обмениваются участками ДНК и после этого приобретают отличительные особенности. Подобие полового процесса и комбинативная изменчивость патогенных бактерий значительно затрудняют борьбу с ними.

Таким образом, благодаря половому размножению и комбинативной изменчивости шансы вида на выживание значительно повышаются.

Клеточный цикл.Время от деления до деления или от деления до смерти называют клеточным циклом.

Типичный клеточный цикл состоит из трех основных частей:

1 – интерфаза

2 – кариокинез – деление ядра (митоз или мейоз)

3 – цитокинез – деление цитоплазмы.

Интерфаза – это основная часть жизни клетки, в течение которой клетка выполняет свою функцию и подготавливается к делению. Продолжительность интерфазы может изменяться от нескольких часов (эпителий двенадцатиперстной кишки) до нескольких десятков лет (нервные и мышечные клетки взрослого человека). Интерфаза делится на 3 части:

G1 – пресинтетический (постмитотический) период;

S – синтетический период;

G2 – постсинтетический (премитотический) период.

В пресинтетическом периоде в клетках происходит выполнение её основной функции, опосредованное синтезом белков и всех видов РНК. Этот период интерфазы может длиться годами и десятилетиями.

В синтетическом периоде происходит репликация ДНК и количество генетического материала удваивается. Так, у человека в каждой клетке количество хромосом увеличивается с 46 до 92. Они остаются связанными друг с другом попарно, но в интерфазном ядре при обычной световой микроскопии хромосомы не видны. Этот период интерфазы длится у млекопитающих 6-12 часов.

В постсинтетическом периоде происходит подготовка органоидов для деления ядра и запасается энергия. Этот период интерфазы длится у млекопитающих 3-6 часов.

Кариокинез – это процесс деления клеточного ядра. Кариокинез у человека протекает по двум вариантам: митозу и мейозу.

Митоз состоит из 4 фаз: профазы, метафазы, анафазы и телофазы. Длительность митоза не менее 10 минут.

Профаза. Скручивание хромосом в спираль (спирализация), при этом они укорачиваются, утолщаются и становятся заметными в световой микроскоп. Они имеют Х-образную форму, т.к. остаются соединенными после репликации ДНК в интерфазе. Центриоли расходятся к полюсам клетки и формируются нити веретена деления. Растворяется ядерная оболочка.

Метафаза. Хромосомы выстраиваются по экватору клетки. Анафаза. Под влиянием тяги нитей веретена деления происходит расщепление удвоенных хромосом и их движение к полюсам клетки (у человека по 46 хромосом движутся к каждому полюсу).

Телофаза. Происходит деспирализация (раскручивание спирали), утончение и удлинение хромосом. При этом хромосомы перестают быть видимыми в световой микроскоп. Распадаются нити веретена деления. Формируются ядерные оболочки. Телофаза митоза переходит в третью стадию клеточного цикла – цитокинез, завершающий деление цитоплазмы на две дочерние клетки.

Итогом митотического деления клетки является формирование диплоидных дочерних клеток, которые по генетической информации ДНК идентичны материнской клетке.

Биологический смысл митоза – точная передача наследственной информации к дочерним клеткам. Митоз используется для восстановления утраченных клеток (регенерации); при делении клеток зародыша и плода во время внутриутробного развития человека; является базой для бесполого размножения.

Мейозсостоит из двух последовательных делений. Каждое деление состоит из 4 стадий: профазы, метафазы, анафазы и телофазы.

Первое мейотическое деление.

Профаза I имеет важное отличие от профазы митоза. Удвоенные (в течение интерфазы I) Х-образные молекулы ДНК гомологичных хромосом в процессе спирализации сближаются и образуют тетрады (биваленты) –учетверенные хромосомы. У человека их 23. Это слияние называется конъюгацией гомологичных хромосом. Далее, происходит кроссинговер – обмен гомологичных участков конъюгированных хромосом. При световой микроскопии заметны точки перекреста гомологичных хромосом – хиазмы (2-3 в каждой тетраде). Последующие события аналогичны профазе митоза: ядерная оболочка растворяется, центриоли расходятся к полюсам клетки, формируются нити веретена деления.

Метафаза I. Тетрады (биваленты) выстраиваются по экватору клетки.

Анафаза I. Под влиянием тяги нитей веретена деления происходит расщепление тетрад на диады (удвоенные хромосомы) и их движение к полюсам клетки (у человека по 23 диады движутся к каждому полюсу).

Телофаза I. В животных клетках происходит деспирализация диад. На короткое время образуется ядерная оболочка и ядро становится интерфазным. У многих растений телофаза I и интерфаза II отсутствуют.

Интерфаза II есть только у животных клеток. Она короткая и в ней не происходит репликация ДНК.

Второе мейотическое деление происходит в двух дочерних клетках, образовавшихся после первого мейотического деления.

Профаза II аналогична профазе митоза: диады спирализуются и укорачиваются, ядерная оболочка растворяется, центриоли расходятся к полюсам клетки, формируются нити веретена деления.

Метафаза II. Диады (23 у человека) выстраиваются по экватору клетки.

Анафаза II. Под влиянием тяги нитей веретена деления происходит расщепление диад на отдельные хромосомы и их движение к полюсам клетки (у человека по 23 отдельных хромосомы движутся к каждому полюсу).

Телофаза II. Происходит деспирализация хромосом. При этом хромосомы перестают быть видимыми в световой микроскоп. Распадаются нити веретена деления. Формируются ядерные оболочки. Телофаза II переходит в третью стадию клеточного цикла – цитокинез, завершающий деление цитоплазмы. Две дочерние клетки, образовавшиеся после первого мейотического деления, разделяются на четыре "внучатых", каждая из которых содержит одинарный гаплоидный набор хромосом (у человека по 23).

Итогом мейотического деления клетки является формирование гаплоидных клеток, которые по генетической информации не идентичны диплоидной материнской клетке.

Биологический смысл мейоза – пересортировка генетического материала для обеспечения полового размножения и комбинативной изменчивости.

В процессе мейоза формируются 2 из 3 источников комбинативной изменчивости (КИ). В профазу-I формируется первый источник КИ: кроссинговер гомологичных (парных) хромосом – обмен участками хромосом, которые кодируют разные варианты проявления отдельных признаков. В анафазу-I (расхождение тетрад) и анафазу-II (расхождение диад) формируется второй источник КИ: случайный характер расхождения к полюсам клетки хромосом, кодирующих разные варианты проявления отдельных признаков. Третий по времени формирования источник КИ – это слияние гамет при оплодотворении. Мейоз является главной составной частью гаметогенеза.

Гаметогенез связан с репродуктивной системой.